会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Overvoltage protection arrangement consisting of a horn spark gap accommodated in an insulating housing
    • US11152769B2
    • 2021-10-19
    • US16622611
    • 2019-01-30
    • DEHN SE + CO KG
    • Helmut HirschmannGeorg WittmannEdmund ZäunerRalph BrockeSebastian Haas
    • H01T4/14H01C7/12H01H85/165H01H85/44H01T1/02H01T4/04H01H85/048
    • The invention relates to an overvoltage protection arrangement consisting of a horn spark gap accommodated in an insulating housing (1) having a deion chamber. A trigger electrode is located in the ignition area of the horn spark gap. A varistor is also present, electrically connected in series to the horn spark gap. According to the invention, a first and a second disconnection apparatus are formed in the housing, wherein the first disconnection apparatus (2) is in heat-conducting connection with the varistor and, when a limit temperature is reached or exceeded, releases a spring-loaded slide (3) which interrupts the series connection between varistor and horn spark gap. Furthermore, the second disconnection apparatus (13) comprises a fusible conductor which is located inside the deion chamber, for example, and can be exposed there to an arc, wherein the fusible conductor holds a spring-loaded disconnector element (14) in a first position and releases this disconnector element (14) when fused as a result of the effects of the arc in such a manner that the disconnector element (14) adopts a second position, wherein an electrical connection to the trigger electrode is interrupted when the second position is reached. A three-pointed, rotatably mounted star or a circular disc with lugs or prongs is formed in the housing such that a first star point (7) is carried along by the slide (3) as it moves to interrupt the series connection. In the same way, a second star point (16) is carried, as the disconnector element (14) moves, from the first to the second position, wherein each movement of the star results in a rotation of the star around its axis of rotation (17) with the consequence that a third point of the star (10) releases a spring-loaded pivoting lever (8) which operates a remote signalling contact (11) and/or a visual fault status display (12).
    • 6. 发明申请
    • OVERVOLTAGE PROTECTION ARRANGEMENT CONSISTING OF A HORN SPARK GAP ACCOMMODATED IN AN INSULATING HOUSING
    • US20210151957A1
    • 2021-05-20
    • US16622611
    • 2019-01-30
    • DEHN SE + CO KG
    • Helmut HirschmannGeorg WittmannEdmund ZaunerRalph BrockeSebastian Haas
    • H01T4/14H01T1/02H01T4/04H01C7/12H01H85/44H01H85/165
    • The invention relates to an overvoltage protection arrangement consisting of a horn spark gap accommodated in an insulating housing (1) having a deion chamber. A trigger electrode is located in the ignition area of the horn spark gap. A varistor is also present, electrically connected in series to the horn spark gap. According to the invention, a first and a second disconnection apparatus are formed in the housing, wherein the first disconnection apparatus (2) is in heat-conducting connection with the varistor and, when a limit temperature is reached or exceeded, releases a spring-loaded slide (3) which interrupts the series connection between varistor and horn spark gap. Furthermore, the second disconnection apparatus (13) comprises a fusible conductor which is located inside the deion chamber, for example, and can be exposed there to an arc, wherein the fusible conductor holds a spring-loaded disconnector element (14) in a first position and releases this disconnector element (14) when fused as a result of the effects of the arc in such a manner that the disconnector element (14) adopts a second position, wherein an electrical connection to the trigger electrode is interrupted when the second position is reached. A three-pointed, rotatably mounted star or a circular disc with lugs or prongs is formed in the housing such that a first star point (7) is carried along by the slide (3) as it moves to interrupt the series connection. In the same way, a second star point (16) is carried, as the disconnector element (14) moves, from the first to the second position, wherein each movement of the star results in a rotation of the star around its axis of rotation (17) with the consequence that a third point of the star (10) releases a spring-loaded pivoting lever (8) which operates a remote signalling contact (11) and/or a visual fault status display (12).