会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • COEXTRUDED SOLAR PANEL BACKSHEET AND METHOD OF MANUFACTURE
    • COEXTREDED SOLAR PANEL BACKSHEET AND METHOD OF MANUFACTURE
    • US20140083487A1
    • 2014-03-27
    • US13626838
    • 2012-09-25
    • E. David SantoleriRobert F. Davis
    • E. David SantoleriRobert F. Davis
    • H01L31/048B32B27/34B29C49/04B32B7/02B32B27/04B29C47/06H01L31/0203B32B27/06
    • An improved backsheet used in the construction of solar panels is disclosed. A method of manufacturing the backsheet and solar panel comprising the backsheet, including coextrusion processes are also disclosed. Additionally, a photovoltaic solar panel module comprising the backsheet of the invention is disclosed. The backsheet of the instant invention may comprise an exterior layer having inner and outer surfaces, a middle layer, having inner and outer surfaces, and an interior layer having inner and outer surfaces. In one embodiment of the invention, the outer surface of the middle layer may be adjoined to the inner surface of the exterior layer, and the inner surface of the middle layer may be adjoined to the outer surface of the interior layer. The exterior layer, middle layer, and interior layer may be adjoined via a co-extrusion process, thereby eliminating the need for the use of adhesives for bonding the layers of the backsheet together. The backsheet of the invention improves upon the efficiency, strength, weather resistance, cost, and useful life of the solar panels in which the backsheet is incorporated.
    • 公开了一种用于建造太阳能电池板的改进的底片。 还公开了一种制造包括底片的底片和太阳能面板的方法,包括共挤出工艺。 另外,公开了包括本发明的背板的光伏太阳能电池板组件。 本发明的底片可以包括具有内表面和外表面的外层,具有内表面和外表面的中间层,以及具有内表面和外表面的内层。 在本发明的一个实施例中,中间层的外表面可以与外层的内表面邻接,并且中间层的内表面可以邻接于内层的外表面。 外层,中间层和内层可以通过共挤出方法邻接,由此不需要使用用于将底片的层粘合在一起的粘合剂。 本发明的底片改善了其中结合有底片的太阳能面板的效率,强度,耐候性,成本和使用寿命。
    • 6. 发明授权
    • Methods of forming zinc oxide based II-VI compound semiconductor layers with shallow acceptor conductivities
    • 形成具有浅受主电导率的氧化锌基II-VI化合物半导体层的方法
    • US07723154B1
    • 2010-05-25
    • US11551058
    • 2006-10-19
    • Bunmi T. AdekoreJonathan M. PierceRobert F. DavisGeorge B. Kenney
    • Bunmi T. AdekoreJonathan M. PierceRobert F. DavisGeorge B. Kenney
    • H01L21/00
    • H01L21/02565H01L21/0237H01L21/02554H01L21/02573H01L21/02579H01L21/02581H01L21/0262H01L21/425
    • A p-type ZnO-based II-VI compound semiconductor layer has silver, potassium and/or gold dopants therein at a net p-type dopant concentration of greater than about 1×1017 cm−3. A method of forming the layer includes using an atomic layer deposition (ALD) technique. This technique includes exposing a substrate to a combination of gases: a first reaction gas containing zinc at a concentration that is repeatedly transitioned between at least two concentration levels during a processing time interval, a second reaction gas containing oxygen and a p-type dopant gas containing at least one p-type dopant species selected from a group consisting of silver, potassium and gold. A concentration of oxygen in the second reaction gas may also be repeatedly transitioned between at least two concentration levels. The concentration of zinc in the first reaction gas and the concentration of oxygen in the second reaction gas may be transitioned in an alternating sequence, so that relatively high zinc concentrations in the first reaction gas overlap with relatively low oxygen concentrations in the second reaction gas and vice versa.
    • p型ZnO基II-VI化合物半导体层在其中具有大于约1×1017cm-3的净p型掺杂剂浓度的银,钾和/或金掺杂剂。 形成层的方法包括使用原子层沉积(ALD)技术。 这种技术包括将基底暴露于气体组合中:在处理时间间隔内以至少两个浓度水平重复过渡浓度的锌的第一反应气体,含有氧的第二反应气体和p型掺杂气体 含有选自银,钾和金的至少一种p型掺杂剂物质。 第二反应气体中的氧浓度也可以在至少两个浓度水平之间重复地转变。 第一反应气体中的锌的浓度和第二反应气体中的氧浓度可以以交替的顺序转变,使得第一反应气体中相对较高的锌浓度与第二反应气体中相对较低的氧浓度重叠, 反之亦然。
    • 9. 发明授权
    • PENDEOEPITAXIAL METHODS OF FABRICATING GALLIUM NITRIDE SEMICONDUCTOR LAYERS ON SILICON CARBIDE SUBSTRATES BY LATERAL GROWTH FROM SIDEWALLS OF MASKED POSTS, AND GALLIUM NITRIDE SEMICONDUCTOR STRUCTURES FABRICATED THEREBY
    • 通过边缘生长形成的硅碳化物基板上的氮化钛半导体层的制备方法和氮化钛半导体结构的制备方法
    • US06376339B2
    • 2002-04-23
    • US09780072
    • 2001-02-09
    • Kevin J. LinthicumThomas GehrkeDarren B. ThomsonEric P. CarlsonPradeep RajagopalRobert F. Davis
    • Kevin J. LinthicumThomas GehrkeDarren B. ThomsonEric P. CarlsonPradeep RajagopalRobert F. Davis
    • H01L2120
    • C30B25/02C30B29/406H01L21/02378H01L21/02458H01L21/0254H01L21/02639H01L21/0265
    • An underlying gallium nitride layer on a silicon carbide substrate is masked with a mask that includes an array of openings therein, and the underlying gallium nitride layer is etched through the array of openings to define posts in the underlying gallium nitride layer and trenches therebetween. The posts each include a sidewall and a top having the mask thereon. The sidewalls of the posts are laterally grown into the trenches to thereby form a gallium nitride semiconductor layer. During this lateral growth, the mask prevents nucleation and vertical growth from the tops of the posts. Accordingly, growth proceeds laterally into the trenches, suspended from the sidewalls of the posts. The sidewalls of the posts may be laterally grown into the trenches until the laterally grown sidewalls coalesce in the trenches to thereby form a gallium nitride semiconductor layer. The lateral growth from the sidewalls of the posts may be continued so that the gallium nitride layer grows vertically through the openings in the mask and laterally overgrows onto the mask on the tops of the posts, to thereby form a gallium nitride semiconductor layer. The lateral overgrowth can be continued until the grown sidewalls coalesce on the mask to thereby form a continuous gallium nitride semiconductor layer. Microelectronic devices may be formed in the continuous gallium nitride semiconductor layer.
    • 在碳化硅衬底上的下面的氮化镓层用掩模进行掩模,该掩模包括其中的开口阵列,并且通过开口阵列蚀刻下面的氮化镓层,以在下面的氮化镓层和沟槽之间形成沟槽。 所述柱各自包括侧壁和其上具有掩模的顶部。 柱的侧壁横向生长到沟槽中,从而形成氮化镓半导体层。 在这种侧向生长期间,面罩防止从柱的顶部成核和垂直生长。 因此,生长横向进入沟槽,从柱的侧壁悬挂。 柱的侧壁可以横向生长到沟槽中,直到横向生长的侧壁在沟槽中聚结,从而形成氮化镓半导体层。 可以继续从柱的侧壁的横向生长,使得氮化镓层垂直地通过掩模中的开口生长,并且横向过度地延伸到柱的顶部上的掩模上,从而形成氮化镓半导体层。 横向过度生长可以继续,直到生长的侧壁在掩模上聚结,从而形成连续的氮化镓半导体层。 微电子器件可以形成在连续的氮化镓半导体层中。