会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Pendeoepitaxial gallium nitride semiconductor layers on silicon carbide substrates
    • 在碳化硅衬底上的先进的外延氮化镓半导体层
    • US07378684B2
    • 2008-05-27
    • US10193823
    • 2002-07-12
    • Kevin J. LinthicumThomas GehrkeDarren B. ThomsonEric P. CarlsonPradeep RajagopalRobert F. Davis
    • Kevin J. LinthicumThomas GehrkeDarren B. ThomsonEric P. CarlsonPradeep RajagopalRobert F. Davis
    • H01L29/20
    • C30B25/02C30B29/406H01L21/02378H01L21/02458H01L21/0254H01L21/02639H01L21/0265
    • An underlying gallium nitride layer on a silicon carbide substrate is masked with a mask that includes an array of openings therein, and the underlying gallium nitride layer is etched through the array of openings to define posts in the underlying gallium nitride layer and trenches therebetween. The posts each include a sidewall and a top having the mask thereon. The sidewalls of the posts are laterally grown into the trenches to thereby form a gallium nitride semiconductor layer. During this lateral growth, the mask prevents nucleation and vertical growth from the tops of the posts. Accordingly, growth proceeds laterally into the trenches, suspended from the sidewalls of the posts. The sidewalls of the posts may be laterally grown into the trenches until the laterally grown sidewalls coalesce in the trenches to thereby form a gallium nitride semiconductor layer. The lateral growth from the sidewalls of the posts may be continued so that the gallium nitride layer grows vertically through the openings in the mask and laterally overgrows onto the mask on the tops of the posts, to thereby form a gallium nitride semiconductor layer. The lateral overgrowth can be continued until the grown sidewalls coalesce on the mask to thereby form a continuous gallium nitride semiconductor layer. Microelectronic devices may be formed in the continuous gallium nitride semiconductor layer.
    • 在碳化硅衬底上的下面的氮化镓层用掩模进行掩模,该掩模包括其中的开口阵列,并且通过开口阵列蚀刻下面的氮化镓层,以在下面的氮化镓层和沟槽之间形成沟槽。 所述柱各自包括侧壁和其上具有掩模的顶部。 柱的侧壁横向生长到沟槽中,从而形成氮化镓半导体层。 在这种侧向生长期间,面罩防止从柱的顶部成核和垂直生长。 因此,生长横向进入沟槽,从柱的侧壁悬挂。 柱的侧壁可以横向生长到沟槽中,直到横向生长的侧壁在沟槽中聚结,从而形成氮化镓半导体层。 可以继续从柱的侧壁的横向生长,使得氮化镓层垂直地通过掩模中的开口生长,并且横向过度地延伸到柱的顶部上的掩模上,从而形成氮化镓半导体层。 横向过度生长可以继续,直到生长的侧壁在掩模上聚结,从而形成连续的氮化镓半导体层。 微电子器件可以形成在连续的氮化镓半导体层中。
    • 10. 发明申请
    • III-NITRIDE MATERIALS INCLUDING LOW DISLOCATION DENSITIES AND METHODS ASSOCIATED WITH THE SAME
    • 三氮化物材料包括低偏差密度和与之相关的方法
    • US20100295056A1
    • 2010-11-25
    • US12748778
    • 2010-03-29
    • Edwin L. PinerJohn C. RobertsPradeep Rajagopal
    • Edwin L. PinerJohn C. RobertsPradeep Rajagopal
    • H01L29/20H01L21/20
    • C30B29/403C30B25/02H01L21/02381H01L21/02458H01L21/02488H01L21/02505H01L21/0251H01L21/02513H01L21/0254H01L21/02543
    • Semiconductor structures including one, or more, III-nitride material regions (e.g., gallium nitride material region) and methods associated with such structures are provided. The III-nitride material region(s) advantageously have a low dislocation density and, in particular, a low screw dislocation density. In some embodiments, the presence of screw dislocations in the III-nitride material region(s) may be essentially eliminated. The presence of a strain-absorbing layer underlying the III-nitride material region(s) and/or processing conditions can contribute to achieving the low screw dislocation densities. In some embodiments, the III-nitride material region(s) having low dislocation densities include a gallium nitride material region which functions as the active region of the device. The low screw dislocation densities of the active device region (e.g., gallium nitride material region) can lead to improved properties (e.g., electrical and optical) by increasing electron transport, limiting non-radiative recombination, and increasing compositional/growth uniformity, amongst other effects.
    • 提供包括一个或多个III族氮化物材料区域(例如,氮化镓材料区域)的半导体结构以及与这种结构相关联的方法。 III族氮化物材料区域有利地具有低位错密度,特别是低螺旋位错密度。 在一些实施方案中,可以基本上消除III族氮化物材料区域中螺旋位错的存在。 在III族氮化物材料区域和/或加工条件下存在应变吸收层有助于实现低螺旋位错密度。 在一些实施例中,具有低位错密度的III族氮化物材料区域包括用作该器件的有源区域的氮化镓材料区域。 活性器件区域(例如,氮化镓材料区域)的低螺旋位错密度可以通过增加电子传输,限制非辐射复合和增加组成/生长均匀性等而导致改进的性能(例如电和光学) 效果。