会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Method for making buried circumferential electrode microcavity plasma device arrays, and electrical interconnects
    • 用于制造埋置的圆周电极微腔等离子体器件阵列和电互连的方法
    • US08404558B2
    • 2013-03-26
    • US13188712
    • 2011-07-22
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • H01L33/16H01J17/04H01J17/49
    • H01J11/18G09F9/313
    • In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.
    • 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。
    • 4. 发明授权
    • Buried circumferential electrode microcavity plasma device arrays, electrical interconnects, and formation method
    • 埋置圆周电极微腔等离子体器件阵列,电气互连和形成方法
    • US08004017B2
    • 2011-08-23
    • US11880698
    • 2007-07-24
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • H01J17/04H01J17/49
    • H01J11/18G09F9/313
    • A preferred embodiment microcavity plasma device array of the invention includes a plurality of first metal circumferential metal electrodes that surround microcavities in the device. The first circumferential electrodes are buried in a metal oxide layer and surround the microcavities in a plane transverse to the microcavity axis, while being protected from plasma in the microcavities by the metal oxide. In embodiments of the invention, the circumferential electrodes can be connected in patterns. A second electrode(s) is arranged so as to be isolated from said first electrodes by said first metal oxide layer. In some embodiments, the second electrode(s) is in a second layer, and in other embodiments the second electrode(s) is also within the first metal oxide layer. A containing layer, e.g., a thin layer of glass, quartz, or plastic, seals the discharge medium (plasma) into the microcavities. In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.
    • 本发明的优选实施例微腔等离子体器件阵列包括围绕器件中的微腔的多个第一金属周向金属电极。 第一圆周电极被埋在金属氧化物层中,并且在垂直于微腔轴线的平面中围绕微腔,同时通过金属氧化物保护微腔中的等离子体。 在本发明的实施例中,圆周电极可以以图案连接。 第二电极被布置成通过所述第一金属氧化物层与所述第一电极隔离。 在一些实施例中,第二电极处于第二层,在其它实施例中,第二电极也在第一金属氧化物层内。 含有层,例如玻璃,石英或塑料的薄层,将放电介质(等离子体)密封成微腔。 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。
    • 6. 发明申请
    • PHOSPHOR COATING FOR IRREGULAR SURFACES AND METHOD FOR CREATING PHOSPHOR COATINGS
    • 用于非正式表面的磷光涂料和创建磷酸盐涂层的方法
    • US20120025696A1
    • 2012-02-02
    • US13183255
    • 2011-07-14
    • J. Gary EdenSung-Jin ParkJeKwon YoonKwang-Soo Kim
    • J. Gary EdenSung-Jin ParkJeKwon YoonKwang-Soo Kim
    • H01J1/62B05D3/02B32B17/00B05D1/18B05D3/12B05D5/06B05D1/02
    • H01J29/20H01J9/222H01J61/44Y10T428/24421
    • Microstructured, irregular surfaces pose special challenges but coatings of the invention can uniformly coat irregular and microstructured surfaces with one or more thin layers of phosphor. Preferred embodiment coatings are used in microcavity plasma devices and the substrate is, for example, a device electrode with a patterned and microstructured dielectric surface. A method for forming a thin encapsulated phosphor coating of the invention applies a uniform paste of metal or polymer layer to the substrate. In another embodiment, a low temperature melting point metal is deposited on the substrate. Polymer particles are deposited on a metal layer, or a mixture of a phosphor particles and a solvent are deposited onto the uniform glass, metal or polymer layer. Sequential soft and hard baking with temperatures controlled to drive off the solvent will then soften or melt the lowest melting point constituents of the glass, metal or polymer layer, partially or fully embed the phosphor particles into glass, polymer, or metal layers, which partially or fully encapsulate the phosphor particles and/or serve to anchor the particles to a surface.
    • 微结构化的不规则表面构成特殊挑战,但是本发明的涂层可以用一层或多层磷光体均匀地涂覆不规则和微结构化的表面。 优选的实施方案涂层用于微腔等离子体装置,并且衬底是例如具有图案化和微结构化电介质表面的器件电极。 用于形成本发明的薄封装磷光体涂层的方法将均匀的金属或聚合物层糊料施加到基底上。 在另一个实施方案中,低温熔点金属沉积在基底上。 聚合物颗粒沉积在金属层上,或者将荧光体颗粒和溶剂的混合物沉积在均匀的玻璃,金属或聚合物层上。 随后温度控制以驱除溶剂的顺序软和硬烘烤将使玻璃,金属或聚合物层的最低熔点成分软化或熔化,部分或完全将磷光体颗粒嵌入玻璃,聚合物或金属层中,部分 或完全包封荧光体颗粒和/或用于将颗粒锚定到表面。
    • 7. 发明申请
    • METHOD FOR MAKING BURIED CIRCUMFERENTIAL ELECTRODE MICROCAVITY PLASMA DEVICE ARRAYS, AND ELECTRICAL INTERCONNECTS
    • 烧结电路微电子等离子体装置阵列和电气互连的方法
    • US20110275272A1
    • 2011-11-10
    • US13188712
    • 2011-07-22
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • H01J9/02
    • H01J11/18G09F9/313
    • In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.
    • 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。
    • 8. 发明申请
    • Buried circumferential electrode microcavity plasma device arrays, electrical interconnects, and formation method
    • 埋置圆周电极微腔等离子体器件阵列,电气互连和形成方法
    • US20080185579A1
    • 2008-08-07
    • US11880698
    • 2007-07-24
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • J. Gary EdenSung-Jin ParkKwang-Soo Kim
    • H01L29/10H01L21/00
    • H01J11/18G09F9/313
    • A preferred embodiment microcavity plasma device array of the invention includes a plurality of first metal circumferential metal electrodes that surround microcavities in the device. The first circumferential electrodes are buried in a metal oxide layer and surround the microcavities in a plane transverse to the microcavity axis, while being protected from plasma in the microcavities by the metal oxide. In embodiments of the invention, the circumferential electrodes can be connected in patterns. A second electrode(s) is arranged so as to be isolated from said first electrodes by said first metal oxide layer. In some embodiments, the second electrode(s) is in a second layer, and in other embodiments the second electrode(s) is also within the first metal oxide layer. A containing layer, e.g., a thin layer of glass, quartz, or plastic, seals the discharge medium (plasma) into the microcavities. In a preferred method of formation embodiment, a metal foil or film is obtained or formed with micro-holes. The foil is anodized to form metal oxide. One or more self-patterned metal electrodes are automatically formed and buried in the metal oxide created by the anodization process. The electrodes form in a closed circumference around each microcavity in a plane(s) transverse to the microcavity axis, and can be electrically isolated or connected. Preferred embodiments provide inexpensive microplasma device electrode structures and a fabrication method for realizing microplasma arrays that are lightweight and scalable to large areas. Electrodes buried in metal oxide and complex patterns of electrodes can also be formed without reference to microplasma devices—that is, for general electrical circuitry.
    • 本发明的优选实施例微腔等离子体器件阵列包括围绕器件中的微腔的多个第一金属周向金属电极。 第一圆周电极被埋在金属氧化物层中,并且在垂直于微腔轴线的平面中围绕微腔,同时通过金属氧化物保护微腔中的等离子体。 在本发明的实施例中,圆周电极可以以图案连接。 第二电极被布置成通过所述第一金属氧化物层与所述第一电极隔离。 在一些实施例中,第二电极处于第二层,在其它实施例中,第二电极也在第一金属氧化物层内。 含有层,例如玻璃,石英或塑料的薄层,将放电介质(等离子体)密封成微腔。 在优选的形成实施方案中,获得或形成有微孔的金属箔或膜。 箔被阳极化以形成金属氧化物。 自动形成一个或多个自图形金属电极并将其埋在通过阳极氧化处理产生的金属氧化物中。 电极在横截于微腔轴的平面中围绕每个微腔的封闭圆周形成,并且可以电隔离或连接。 优选实施例提供廉价的微型器件电极结构和用于实现轻量级并且可扩展到大面积的微等离子体阵列的制造方法。 掩埋在金属氧化物中的电极和电极的复杂图案也可以形成,而不参考微等离子体装置,即用于一般的电路。