会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Reverse-conducting insulated gate bipolar transistor
    • 反向绝缘栅双极晶体管
    • US08502345B2
    • 2013-08-06
    • US13015229
    • 2011-01-27
    • Michio NemotoSouichi Yoshida
    • Michio NemotoSouichi Yoshida
    • E21B49/00
    • H01L29/739
    • Reverse-conducting insulated gate bipolar transistor in which IGBT region and FWD region are integrated into a single body in a semiconductor substrate with a common active region is disclosed. MOS gate structure is on a first major surface side. Rear surface side structure is in a second major surface side of the semiconductor substrate and includes a plurality of recessed parts vertical to the second major surface, which are repeated periodically along the second major surface. A plurality of protruding parts are interposed between the recessed parts. Rear surface side structure includes p type collector region on a bottom surface of the recessed part, n type first field stop region at a position deeper than the collector region, n type cathode region on the top surface of the protruding part, and n type second field stop region in the protruding part at a position deeper than the cathode region.
    • 公开了其中IGBT区域和FWD区域在具有公共有源区域的半导体衬底中集成到单个体中的反向导通绝缘栅双极晶体管。 MOS栅结构在第一主表面上。 后表面侧结构位于半导体基板的第二主表面侧,并且包括与第二主表面垂直的多个凹部,其沿着第二主表面周期性重复。 在凹部之间插入有多个突出部。 后表面侧结构包括凹部的底面上的p型集电极区域,位于比集电极区域深的位置的n型第一场停止区域,突出部分的顶面上的n型阴极区域和n型第二区域 位于比阴极区域更深的位置处的突出部中的场停止区域。
    • 5. 发明授权
    • Method of manufacturing a semiconductor device
    • 制造半导体器件的方法
    • US08163630B2
    • 2012-04-24
    • US12662349
    • 2010-04-13
    • Michio Nemoto
    • Michio Nemoto
    • H01L21/268
    • H01L29/861H01L29/36H01L29/66136H01L29/868
    • A method of manufacturing a semiconductor device by thinning a substrate by grinding, and performing ion implantation. In a diode in which a P anode layer and an anode electrode are formed at a side of a right face of an N− drift layer, and an N+ cathode layer and a cathode electrode are formed at a side of a back face of the N− drift layer, an N cathode buffer layer is formed thick compared with the N+-type cathode layer between the N−-type drift layer and the N+ cathode layer, the buffer layer being high in concentration compared with the N− drift layer, and low compared with the N+ cathode layer. When a reverse bias voltage is applied, a depletion layer is stopped in the middle of the N cathode buffer layer, and thus prevented from reaching the N+ cathode layer, so that the leakage current is suppressed.
    • 一种半导体器件的制造方法,其特征在于,通过研磨使基板变薄,进行离子注入。 在其中在N漂移层右侧形成有P阳极层和阳极电极的二极管中,在N的背面侧形成N +阴极层和阴极电极 - 漂移层,与N型漂移层和N +阴极层之间的N +型阴极层相比,形成较厚的N阴极缓冲层,与N漂移层相比,缓冲层的浓度高; 低于N +阴极层。 当施加反向偏置电压时,耗尽层在N阴极缓冲层的中间停止,从而防止到达N +阴极层,从而抑制漏电流。
    • 8. 发明授权
    • Reverse blocking semiconductor device and a method for manufacturing the same
    • 反向阻挡半导体器件及其制造方法
    • US07307330B2
    • 2007-12-11
    • US11397478
    • 2006-04-04
    • Michio NemotoManabu TakeiTatsuya Naito
    • Michio NemotoManabu TakeiTatsuya Naito
    • H01L23/58
    • H01L29/0646H01L29/0619H01L29/0638H01L29/0834H01L29/404H01L29/7395
    • A reverse blocking semiconductor device that shows no adverse effect of an isolation region on reverse recovery peak current, that has a breakdown withstanding structure exhibiting satisfactory soft recovery, that suppresses aggravation of reverse leakage current, which essentially accompanies a conventional reverse blocking IGBT, and that retains satisfactorily low on-state voltage is disclosed. The device includes a MOS gate structure formed on a n− drift layer, the MOS gate structure including a p+ base layer formed in a front surface region of the drift layer, an n+ emitter region formed in a surface region of the base layer, a gate insulation film covering a surface area of the base layer between the emitter region and the drift layer, and a gate electrode formed on the gate insulation film. An emitter electrode is in contact with both the emitter region and the base layer of the MOS gate structure. A p+ isolation region surrounds the MOS gate structure through the drift layer and extends across whole thickness of the drift layer. A p+ collector layer is formed on a rear surface of the drift layer and connects to a rear side of the isolation region. A distance W is greater than a thickness d, in which the distance W is a distance from an outermost position of a portion of the emitter electrode, the portion being in contact with the base layer, to an innermost position of the isolation region, and the thickness d is a dimension in a depth direction of the drift layer.
    • 没有显示隔离区域对反向恢复峰值电流的不利影响的反向阻挡半导体器件,其具有显示令人满意的软恢复的击穿耐受结构,其抑制基本上伴随常规反向阻断IGBT的反向漏电流的恶化,并且 公开了令人满意的低导通电压。 该器件包括形成在n漂移层上的MOS栅极结构,该MOS栅极结构包括形成在该漂移层的前表面区域中的p +基极层,形成在该基极层的表面区域中的n +发射极区域, 覆盖发射极区域和漂移层之间的基底层的表面区域的栅极绝缘膜,以及形成在栅极绝缘膜上的栅电极。 发射极电极与MOS栅极结构的发射极区域和基极层接触。 p +隔离区域通过漂移层包围MOS栅极结构,并延伸穿过漂移层的整个厚度。 p +集电极层形成在漂移层的后表面上并连接到隔离区的后侧。 距离W大于厚度d,其中距离W是距离发射电极的一部分的最外侧位置(与基层接触的部分)到隔离区域的最内位置的距离,以及 厚度d是漂移层的深度方向的尺寸。