会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • REVERSE-CONDUCTING INSULATED GATE BIPOLAR TRANSISTOR
    • 反向绝缘栅双极晶体管
    • US20110186965A1
    • 2011-08-04
    • US13015229
    • 2011-01-27
    • Michio NEMOTOSouichi YOSHIDA
    • Michio NEMOTOSouichi YOSHIDA
    • H01L29/739
    • H01L29/739
    • Reverse-conducting insulated gate bipolar transistor in which IGBT region and FWD region are integrated into a single body in a semiconductor substrate with a common active region is disclosed. MOS gate structure is on a first major surface side. Rear surface side structure is in a second major surface side of the semiconductor substrate and includes a plurality of recessed parts vertical to the second major surface, which are repeated periodically along the second major surface. A plurality of protruding parts are interposed between the recessed parts. Rear surface side structure includes p type collector region on a bottom surface of the recessed part, n type first field stop region at a position deeper than the collector region, n type cathode region on the top surface of the protruding part, and n type second field stop region in the protruding part at a position deeper than the cathode region.
    • 公开了其中IGBT区域和FWD区域在具有公共有源区域的半导体衬底中集成到单个体中的反向导通绝缘栅双极晶体管。 MOS栅结构在第一主表面上。 后表面侧结构位于半导体基板的第二主表面侧,并且包括与第二主表面垂直的多个凹部,其沿着第二主表面周期性重复。 在凹部之间插入有多个突出部。 后表面侧结构包括凹部的底面上的p型集电极区域,位于比集电极区域深的位置的n型第一场停止区域,突出部分的顶面上的n型阴极区域和n型第二区域 位于比阴极区域更深的位置处的突出部中的场停止区域。
    • 5. 发明授权
    • Power semiconductor device with soft switching characteristic and manufacturing method for same
    • 具有软开关特性的功率半导体器件及其制造方法
    • US07799662B2
    • 2010-09-21
    • US12120493
    • 2008-05-14
    • Michio Nemoto
    • Michio Nemoto
    • H01L21/322H01L29/861
    • H01L29/8611H01L21/2255H01L21/263H01L29/32H01L29/36H01L29/7397H01L29/861
    • After introducing oxygen into an N− type FZ wafer serving as an N− type first semiconductor layer, a P type second semiconductor layer and an anode are formed on a surface of the FZ wafer. The FZ wafer is irradiated with protons from the side of the anode, introducing crystal defects into the FZ wafer. By performing heat treatment to recover the crystal defects in the FZ wafer, the net doping concentration of a portion within the first semiconductor layer is made higher than the initial net doping concentration of the FZ wafer, and a desired broad buffer structure is formed. Accordingly, a semiconductor device with fast operation and low losses, and having soft switching characteristics, can be manufactured inexpensively using FZ bulk wafers, with good controllability and yields.
    • 在将氧气引入用作N-型第一半导体层的N型FZ晶片之后,在FZ晶片的表面上形成P型第二半导体层和阳极。 FZ晶片从阳极侧面被质子照射,将晶体缺陷引入FZ晶片。 通过进行热处理以回收FZ晶片中的晶体缺陷,使第一半导体层内的部分的净掺杂浓度高于FZ晶片的初始净掺杂浓度,形成期望的宽缓冲结构。 因此,具有快速操作和低损耗并且具有软开关特性的半导体器件可以使用FZ块状晶片廉价地制造,具有良好的可控性和良率。
    • 6. 发明授权
    • Semiconductor device and method of manufacturing the same
    • 半导体装置及其制造方法
    • US07728409B2
    • 2010-06-01
    • US11594975
    • 2006-11-09
    • Michio Nemoto
    • Michio Nemoto
    • H01L30/00
    • H01L29/861H01L29/36H01L29/66136H01L29/868
    • A semiconductor device formed by decreasing thickness of a substrate by grinding, and performing ion implantation. In a diode in which a P anode layer and an anode electrode are formed at a side of a right face of an N− drift layer, and an N+ cathode layer and a cathode electrode are formed at a side of a back face of the N− drift layer, an N cathode buffer layer is formed thick compared with the N+-type cathode layer between the N−-type drift layer and the N+ cathode layer, the buffer layer being high in concentration compared with the N− drift layer, and low compared with the N+ cathode layer. When a reverse bias voltage is applied, a depletion layer is stopped in the middle of the N cathode buffer layer, and thus prevented from reaching the N+ cathode layer, so that the leakage current is suppressed.
    • 通过研磨减少基板的厚度并进行离子注入而形成的半导体器件。 在其中在N漂移层右侧形成有P阳极层和阳极电极的二极管中,在N的背面侧形成N +阴极层和阴极电极 - 漂移层,与N型漂移层和N +阴极层之间的N +型阴极层相比,形成较厚的N阴极缓冲层,与N漂移层相比,缓冲层的浓度高; 低于N +阴极层。 当施加反向偏置电压时,耗尽层在N阴极缓冲层的中间停止,从而防止到达N +阴极层,从而抑制漏电流。
    • 7. 发明申请
    • SEMICONDUCTOR DEVICE AND METHOD OF PRODUCING THE SAME
    • 半导体器件及其制造方法
    • US20090224284A1
    • 2009-09-10
    • US12367540
    • 2009-02-08
    • Michio NEMOTO
    • Michio NEMOTO
    • H01L29/66H01L21/26H01L21/329
    • H01L29/8611H01L21/2255H01L21/263H01L29/167H01L29/66128
    • A semiconductor substrate and a method of its manufacture has a semiconductor substrate having a carbon concentration in a range of 6.0×1015 to 2.0×1017 atoms/cm3, both inclusively. One principal surface of the substrate is irradiated with protons and then heat-treated to thereby form a broad buffer structure, namely a region in a first semiconductor layer where a net impurity doping concentration is locally maximized. Due to the broad buffer structure, lifetime values are substantially equalized in a region extending from an interface between the first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer to the region where the net impurity doping concentration is locally maximized. In addition, the local minimum of lifetime values of the first semiconductor layer becomes high. It is thus possible to provide a semiconductor device having soft recovery characteristics, in addition to high-speed and low-loss characteristics, while suppressing a kinked leakage current waveform.
    • 半导体衬底及其制造方法具有包含碳浓度在6.0×10 15至2.0×10 17原子/ cm 3范围内的半导体衬底。 用质子照射衬底的一个主表面,然后进行热处理,从而形成宽的缓冲结构,即第一半导体层中的净杂质掺杂浓度局部最大化的区域。 由于宽的缓冲结构,在从第一半导体层和形成在第一半导体层上的第二半导体层之间的界面延伸到局部最大化净杂质掺杂浓度的区域的区域中,寿命值基本相等。 此外,第一半导体层的寿命值的局部最小值变高。 因此,可以在抑制扭结的漏电流波形的同时,提供除了高速低损耗特性之外还具有软恢复特性的半导体器件。
    • 8. 发明申请
    • Semiconductor device and method of manufacturing the same
    • 半导体装置及其制造方法
    • US20070108558A1
    • 2007-05-17
    • US11594975
    • 2006-11-09
    • Michio Nemoto
    • Michio Nemoto
    • H01L29/00H01L31/00
    • H01L29/861H01L29/36H01L29/66136H01L29/868
    • A semiconductor device formed by decreasing thickness of a substrate by grinding, and performing ion implantation. In a diode in which a P anode layer and an anode electrode are formed at a side of a right face of an N− drift layer, and an N+ cathode layer and a cathode electrode are formed at a side of a back face of the N− drift layer, an N cathode buffer layer is formed thick compared with the N+-type cathode layer between the N−-type drift layer and the N+ cathode layer, the buffer layer being high in concentration compared with the N− drift layer, and low compared with the N+ cathode layer. When a reverse bias voltage is applied, a depletion layer is stopped in the middle of the N cathode buffer layer, and thus prevented from reaching the N+ cathode layer, so that the leakage current is suppressed.
    • 通过研磨减少衬底的厚度并进行离子注入而形成的半导体器件。 在其中在N +漂移层的右面的一侧形成P阳极层和阳极电极的二极管和N + 在N +漂移层的背面的一侧形成阴极电极,与N + +型阴极层相比,形成较厚的N阴极缓冲层 在N + - +型漂移层和N + +阴极层之间,缓冲层的浓度高于N +漂移层 ,与N + +阴极层相比较低。 当施加反向偏置电压时,耗尽层在N阴极缓冲层的中间停止,从而防止到达N + +阴极层,从而抑制漏电流。