会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • System and deconvolution process for an optical filtering device based on WGM resonance
    • 基于WGM共振的光学滤波器的系统和去卷积过程
    • US07324199B2
    • 2008-01-29
    • US11222057
    • 2005-09-08
    • Shiou-jyh JaEric TowersRobert SheltonBrian Strecker
    • Shiou-jyh JaEric TowersRobert SheltonBrian Strecker
    • G01N21/25
    • G01J3/26G01J3/28G01J3/4338
    • A system and method for detecting the optical spectrum of an optical input signal. The system includes a tunable optical filter having a microresonator that is tunable across a plurality of states and a processor. The input signal is coupled into the microresonator, which is continuously tuned across a spectral range that is narrow relative to the targeted detection range. Signal information such as center wavelength, power distribution, and power strength are extracted from the measured output intensities resulting from the interaction of the unknown input signal with the tunable resonator at various tuned states. The processor includes a transfer function database with the resonant spectra of the tunable optical filter at predefined states. The processor applies an iterative non-linear deconvolution algorithm, and preferably an accelerated Richardson-Lucy algorithm, to calculate the spectrum of the input signal using the transfer function information and the intensity measurements.
    • 一种用于检测光输入信号的光谱的系统和方法。 该系统包括可调谐光学滤波器,其具有跨多个状态可调谐的微谐振器和处理器。 输入信号耦合到微谐振器中,该谐振器在相对于目标检测范围窄的光谱范围内连续调谐。 从未知输入信号与可调谐谐振器在各种调谐状态的相互作用产生的测量输出强度中提取诸如中心波长,功率分布和功率强度之类的信号信息。 处理器包括具有预定状态的可调谐滤光器的谐振频谱的传递函数数据库。 处理器应用迭代非线性去卷积算法,优选加速理查森 - 露西算法,以使用传递函数信息和强度测量来计算输入信号的频谱。
    • 2. 发明申请
    • Optical fiber sensors using grating-assisted surface plasmon-coupled emission (GASPCE)
    • 使用光栅辅助表面等离激元耦合发射(GASPCE)的光纤传感器
    • US20080007732A1
    • 2008-01-10
    • US11267093
    • 2005-11-04
    • Shiou-jyh Ja
    • Shiou-jyh Ja
    • G01J3/44G01J3/30G01N21/55
    • G01N21/648G01N21/6428G01N21/6452
    • The present invention relates to a new fluorescence detection platform based on the integration of grating-assisted surface plasmon coupled emission (GASPCE). This innovation builds upon the traditional SPCE technique by adding a grating to the metal surface which thereby provides additional emission confinement. The original conical emission pattern associated with the traditional SPCE technique is “squeezed” into a “two-beam” emission pattern that is more readily interrogated and collected by a waveguiding structure. With the GASPCE method and system of the present invention, a fluorescence emission can be coupled into optical waveguide with greater efficiency. As such, the integration of the GASPCE and existing optical fiber networking offers distributed real-time sensing capabilities. Also, the integration with an integrated optical chip may enable multi-channel array sensing or high-throughput florescence sensing.
    • 本发明涉及一种基于光栅辅助表面等离激元耦合发射(GASPCE)的集成的新的荧光检测平台。 该创新基于传统的SPCE技术,通过向金属表面添加光栅,从而提供额外的发射限制。 与传统SPCE技术相关联的原始锥形发射图案被“挤压”成由波导结构更容易询问和收集的“双光束”发射图案。 利用本发明的GASPCE方法和系统,荧光发射可以以更高的效率耦合到光波导中。 因此,GASPCE和现有光纤网络的集成提供了分布式实时感测功能。 此外,与集成光学芯片的集成可以实现多通道阵列感测或高通量荧光感测。
    • 4. 发明申请
    • Microresonator-based high-performance high-pressure sensor and system
    • 基于微谐振器的高性能高压传感器和系统
    • US20050210989A1
    • 2005-09-29
    • US11068587
    • 2005-02-28
    • Shiou-jyh JaLloyd SalsmanBrian StreckerRobert Shelton
    • Shiou-jyh JaLloyd SalsmanBrian StreckerRobert Shelton
    • C03B37/07G01L11/02
    • G01L11/02
    • An optically-powered integrated microstructure pressure sensing system for sensing pressure within a cavity. the pressure sensing system comprises a pressure sensor having an optical resonant structure subject to the pressure within the cavity and having physical properties changing due to changing pressures within the cavity. A substrate supports the optical resonant structure. An input optical pathway evanescently couples light into the optical resonant structure. An output optical pathway collects light from the optical resonance structure. A light source delivers a known light input into the input optical pathway whereby the known light input is evanescently coupled into the optical resonant structure by the input optical pathway and a portion of such light is collected from the optical resonant structure by the output optical pathway. A light detector receives the portion of the light collected from the optical resonant structure, and generates a light signal indicative of such portion of the light collected from the optical resonant structure. A temperature compensation sensor generates a temperature signal indicative of the temperature near the optical resonant structure. A spectrum detection device receives the light signal and temperature signal. The spectrum detection device analyzing the light signal and the temperature signal with a detection algorithm to generating a pressure signal indicative of the pressure within the cavity.
    • 用于感测空腔内的压力的光学动力综合微结构压力感测系统。 压力感测系统包括压力传感器,该压力传感器具有受空腔内的压力的光学谐振结构,并且由于空腔内的压力变化而具有物理性质的变化。 基板支撑光学谐振结构。 输入光学路径ev逝地将光耦合到光学谐振结构中。 输出光学路径收集来自光学共振结构的光。 光源将已知的光输入传递到输入光学路径中,由此已知的光输入通过输入光学路径ev逝地耦合到光学谐振结构中,并且这种光的一部分通过输出光学路径从光学谐振结构收集。 光检测器接收从光学谐振结构收集的光的一部分,并且产生指示从光学谐振结构收集的光的这种部分的光信号。 温度补偿传感器产生指示光学谐振结构附近的温度的温度信号。 光谱检测装置接收光信号和温度信号。 频谱检测装置用检测算法分析光信号和温度信号,以产生指示腔内的压力的压力信号。
    • 5. 发明授权
    • Optical emission collection and detection device and method
    • 光发射采集和检测装置及方法
    • US07982878B1
    • 2011-07-19
    • US12245574
    • 2008-10-03
    • Shiou-jyh Ja
    • Shiou-jyh Ja
    • G01N21/55G01N21/64
    • G01N21/648G01N2021/6469
    • This invention generally relates to optical devices that can collect and detect signal emissions effectively while allowing the excitation light path and the sample flow path to coexist non-obstructively in a compact format. More specifically, this invention relates to a compact device having a multilayer coating on the structure surface and a wave guiding structure. In the device, using the surface plasmon coupling effect, the majority of the optical emission from the emitter on top of the multilayer coating is distributed toward the wave guiding structure. The wave guiding structure then further directs the emission signal to the detector with a high efficiency.
    • 本发明一般涉及能够有效地收集和检测信号发射的光学装置,同时允许激发光路和样品流动路径以紧凑的格式非阻塞地共存。 更具体地,本发明涉及在结构表面上具有多层涂层的紧凑装置和波导结构。 在器件中,使用表面等离子体耦合效应,多层涂层顶部的发射极的大部分光发射朝向波导结构分布。 然后,波导结构进一步以高效率将发射信号引导到检测器。
    • 6. 发明授权
    • Optical fiber sensors using grating-assisted surface plasmon-coupled emission (GASPCE)
    • 使用光栅辅助表面等离激元耦合发射(GASPCE)的光纤传感器
    • US07835006B2
    • 2010-11-16
    • US11267093
    • 2005-11-04
    • Shiou-jyh Ja
    • Shiou-jyh Ja
    • G01B11/06
    • G01N21/648G01N21/6428G01N21/6452
    • The present invention relates to a new fluorescence detection platform based on the integration of grating-assisted surface plasmon coupled emission (GASPCE). This innovation builds upon the traditional SPCE technique by adding a grating to the metal surface which thereby provides additional emission confinement. The original conical emission pattern associated with the traditional SPCE technique is “squeezed” into a “two-beam” emission pattern that is more readily interrogated and collected by a waveguiding structure. With the GASPCE method and system of the present invention, a fluorescence emission can be coupled into optical waveguide with greater efficiency. As such, the integration of the GASPCE and existing optical fiber networking offers distributed real-time sensing capabilities. Also, the integration with an integrated optical chip may enable multi-channel array sensing or high-throughput florescence sensing.
    • 本发明涉及一种基于光栅辅助表面等离激元耦合发射(GASPCE)的集成的新的荧光检测平台。 该创新基于传统的SPCE技术,通过向金属表面添加光栅,从而提供额外的发射限制。 与传统SPCE技术相关联的原始锥形发射图案被“挤压”成由波导结构更容易询问和收集的“双光束”发射图案。 利用本发明的GASPCE方法和系统,荧光发射可以以更高的效率耦合到光波导中。 因此,GASPCE和现有光纤网络的集成提供了分布式实时感测功能。 此外,与集成光学芯片的集成可以实现多通道阵列感测或高通量荧光感测。
    • 7. 发明授权
    • Microresonator-based high-performance high-pressure sensor and system
    • 基于微谐振器的高性能高压传感器和系统
    • US07435944B2
    • 2008-10-14
    • US11713858
    • 2007-03-05
    • Shiou-jyh JaLloyd SalsmanBrian StreckerRobert SheltonFrederick G. Johnson
    • Shiou-jyh JaLloyd SalsmanBrian StreckerRobert SheltonFrederick G. Johnson
    • G01J1/04G01L9/00
    • G01L11/02
    • An optically-powered integrated microstructure pressure sensing system for sensing pressure within a cavity. The pressure sensing system comprises a pressure sensor having an optical resonant structure subject to the pressure within the cavity and having physical properties changing due to changing pressures within the cavity. A substrate supports the optical resonant structure. An input optical pathway evanescently couples light into the optical resonant structure. An output optical pathway collects light from the optical resonance structure. A light source delivers a known light input into the input optical pathway whereby the known light input is evanescently coupled into the optical resonant structure by the input optical pathway and a portion of such light is collected from the optical resonant structure by the output optical pathway. A light detector receives the portion of the light collected from the optical resonant structure, and generates a light signal indicative of such portion of the light collected from the optical resonant structure. A temperature compensation sensor generates a temperature signal indicative of the temperature near the optical resonant structure. A spectrum detection device receives the light signal and temperature signal. The spectrum detection device analyzing the light signal and the temperature signal with a detection algorithm to generating a pressure signal indicative of the pressure within the cavity.
    • 用于感测空腔内的压力的光学动力综合微结构压力感测系统。 压力感测系统包括具有光学谐振结构的压力传感器,该光学谐振结构承受空腔内的压力并且由于空腔内的压力变化而具有物理性质的变化。 基板支撑光学谐振结构。 输入光学路径ev逝地将光耦合到光学谐振结构中。 输出光学路径收集来自光学共振结构的光。 光源将已知的光输入传递到输入光学路径中,由此已知的光输入通过输入光学路径ev逝地耦合到光学谐振结构中,并且这种光的一部分通过输出光学路径从光学谐振结构收集。 光检测器接收从光学谐振结构收集的光的一部分,并且产生指示从光学谐振结构收集的光的这种部分的光信号。 温度补偿传感器产生指示光学谐振结构附近的温度的温度信号。 光谱检测装置接收光信号和温度信号。 频谱检测装置用检测算法分析光信号和温度信号,以产生指示腔内的压力的压力信号。
    • 8. 发明授权
    • Microresonator-based high-performance high-pressure sensor and system
    • 基于微谐振器的高性能高压传感器和系统
    • US07244926B2
    • 2007-07-17
    • US11068587
    • 2005-02-28
    • Shiou-jyh JaLloyd SalsmanBrian StreckerRobert SheltonFrederick G. Johnson
    • Shiou-jyh JaLloyd SalsmanBrian StreckerRobert SheltonFrederick G. Johnson
    • G01J1/04G01L9/00
    • G01L11/02
    • An optically-powered integrated microstructure pressure sensing system for sensing pressure within a cavity. the pressure sensing system comprises a pressure sensor having an optical resonant structure subject to the pressure within the cavity and having physical properties changing due to changing pressures within the cavity. A substrate supports the optical resonant structure. An input optical pathway evanescently couples light into the optical resonant structure. An output optical pathway collects light from the optical resonance structure. A light source delivers a known light input into the input optical pathway whereby the known light input is evanescently coupled into the optical resonant structure by the input optical pathway and a portion of such light is collected from the optical resonant structure by the output optical pathway. A light detector receives the portion of the light collected from the optical resonant structure, and generates a light signal indicative of such portion of the light collected from the optical resonant structure. A temperature compensation sensor generates a temperature signal indicative of the temperature near the optical resonant structure. A spectrum detection device receives the light signal and temperature signal. The spectrum detection device analyzing the light signal and the temperature signal with a detection algorithm to generating a pressure signal indicative of the pressure within the cavity.
    • 用于感测空腔内的压力的光学动力综合微结构压力感测系统。 压力感测系统包括压力传感器,该压力传感器具有受空腔内的压力的光学谐振结构,并且由于空腔内的压力变化而具有物理性质的变化。 基板支撑光学谐振结构。 输入光学路径ev逝地将光耦合到光学谐振结构中。 输出光学路径收集来自光学共振结构的光。 光源将已知的光输入传递到输入光学路径中,由此已知的光输入通过输入光学路径ev逝地耦合到光学谐振结构中,并且这种光的一部分通过输出光学路径从光学谐振结构收集。 光检测器接收从光学谐振结构收集的光的一部分,并且产生指示从光学谐振结构收集的光的这种部分的光信号。 温度补偿传感器产生指示光学谐振结构附近的温度的温度信号。 光谱检测装置接收光信号和温度信号。 频谱检测装置用检测算法分析光信号和温度信号,以产生指示腔内的压力的压力信号。
    • 9. 发明申请
    • System and deconvolution process for an optical filtering device based on WGM resonance
    • 基于WGM共振的光学滤波器的系统和去卷积过程
    • US20070109550A1
    • 2007-05-17
    • US11222057
    • 2005-09-08
    • Shiou-jyh JaEric TowersRobert SheltonBrian Strecker
    • Shiou-jyh JaEric TowersRobert SheltonBrian Strecker
    • G01B9/02
    • G01J3/26G01J3/28G01J3/4338
    • A system and method for detecting the optical spectrum of an optical input signal. The system includes a tunable optical filter having a microresonator that is tunable across a plurality of states and a processor. The input signal is coupled into the microresonator, which is continuously tuned across a spectral range that is narrow relative to the targeted detection range. Signal information such as center wavelength, power distribution, and power strength are extracted from the measured output intensities resulting from the interaction of the unknown input signal with the tunable resonator at various tuned states. The processor includes a transfer function database with the resonant spectra of the tunable optical filter at predefined states. The processor applies an iterative non-linear deconvolution algorithm, and preferably an accelerated Richardson-Lucy algorithm, to calculate the spectrum of the input signal using the transfer function information and the intensity measurements.
    • 一种用于检测光输入信号的光谱的系统和方法。 该系统包括可调谐光学滤波器,其具有跨多个状态可调谐的微谐振器和处理器。 输入信号耦合到微谐振器中,该谐振器在相对于目标检测范围窄的光谱范围内连续调谐。 从未知输入信号与可调谐谐振器在各种调谐状态的相互作用产生的测量输出强度中提取诸如中心波长,功率分布和功率强度之类的信号信息。 处理器包括具有预定状态的可调谐滤光器的谐振频谱的传递函数数据库。 处理器应用迭代非线性去卷积算法,优选加速理查森 - 露西算法,以使用传递函数信息和强度测量来计算输入信号的频谱。