会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~

一种三维纤维骨架多孔材料及其制备方法

申请号 CN202110769090.0 申请日 2021-07-07 公开(公告)号 CN113684680A 公开(公告)日 2021-11-23
申请人 山东大学; 发明人 焦秀玲; 邱烽; 陈代荣; 夏玉国;
摘要 本 发明 涉及一种三维 纤维 骨架多孔材料,所述的多孔材料是以 纳米级 或微米级纤维为骨架,纤维之间以无序或部分有序的方式排列,纤维之间形成纳米级、微米级或毫米级的孔道,纤维直径为50nm‑1微米,三维纤维骨架多孔材料的平均孔径为50nm~10毫米;本发明的制备过程包括二维多孔材料表面液膜的形成,通过化学或物理方式使二维多孔材料内部液相生成气体,二维材料在气体压 力 作用下的膨胀,液体从体系中的去除步骤。本发明制备的三维纤维骨架多孔材料 密度 小且可调,孔隙率高,有良好的力学性能,导热系数小,吸声性能好,制备过程简单,绿色环保,适于大量制备。
权利要求

1.一种三维纤维骨架多孔材料,所述的多孔材料是以纳米级或微米级纤维为骨架,纤
维之间以无序或部分有序的方式排列,纤维之间形成纳米级、微米级或毫米级的孔道,纤维
直径为50nm‑1微米,三维纤维骨架多孔材料的平均孔径为50nm~10毫米,作为骨架的纤维
选自有机聚合物纤维、无机/有机聚合物复合纤维、无机纤维、有机/有机聚合物复合纤维、
无机/无机复合纤维中的一种。
2.根据权利要求1所述的三维纤维骨架多孔材料,其特征在于,作为骨架的纤维选自有
机聚合物纤维或无机/有机聚合物复合纤维,三维纤维骨架多孔材料的孔隙率为90%~
99%。
3.权利要求1所述的三维纤维骨架多孔材料的制备方法,包括步骤如下:
a、将二维多孔材料浸入溶液中后取出或向二维材料表面滴加溶液,使二维材料完全被
液体浸润,在纤维膜表面形成液膜;
b、通过物理或化学方式使二维多孔材料填充液体内部生成气体;
c、二维多孔材料在气体压作用下逐渐膨胀,形成三维纤维骨架多孔材料;
d、干燥三维纤维骨架多孔材料。
4.根据权利要求3所述的制备方法,其特征在于,步骤a中,二维多孔材料的成型方式为
湿法纺丝干法纺丝、喷吹、离心甩丝或静电纺丝,二维多孔材料直接在收集基底上面形成
二维纤维膜、纤维毯、纤维毡,或通过对纤维进行后处理形成由纤维构筑的二维多孔材料;
优选的,步骤a中,二维多孔材料的成型方式为静电纺丝,静电纺丝为溶液静电纺丝方
法或熔融静电纺丝方法。
5.根据权利要求3所述的制备方法,其特征在于,步骤a中,二维多孔材料成型前的溶胶
前驱体为高分子溶液或熔体、高分子和无机化合物混合溶液或溶胶、无机化合物溶液或溶
胶。
6.根据权利要求3所述的制备方法,其特征在于,步骤b中,化学生成气体的方式为过
化氢的催化分解、氢化钠的催化分解或酸氢铵的分解。
7.根据权利要求3所述的制备方法,其特征在于,步骤b中,通过化学反应生成的气体为
无毒的氧气、氢气或二氧化碳。
8.根据权利要求3所述的制备方法,其特征在于,步骤b中,用于催化化学反应并生成气
体的催化剂可预先加入制备二维多孔材料的溶胶中,并通过纺丝保留在二维多孔材料的纤
维中,或通过加入形成液膜的溶液中引入。
9.根据权利要求6所述的制备方法,其特征在于,产生气体的方式为过氧化氢的催化分
解产生氧气时,催化剂为含锆化合物、氯化、氯化亚铁;含锆化合物为氢氧化锆或氧氯化
锆;
产生气体的方式为过氧化氢的分解产生氧气时,在性气体条件下催化加快气体的生
成和纤维膜的膨胀;
产生气体的方式为硼氢化钠的催化分解产生氢气时,在酸性气体条件下催化加快气体
的生成和纤维膜的膨胀;
产生气体的方式为碳酸氢铵的分解产生气、以及二氧化碳时,加热加快气体的生
成和纤维膜的膨胀。
10.根据权利要求3所述的制备方法,其特征在于,步骤d中,干燥方式为常压干燥、冷冻
干燥或超临界干燥。

说明书全文

一种三维纤维骨架多孔材料及其制备方法

技术领域

[0001] 本发明涉及一种三维纤维骨架多孔材料及其制备方法,属于新材料领域。

背景技术

[0002] 三维多孔材料是一种由固体微粒或者纤维构成的三维聚集状态,其中内部含有大量气体作为分散介质,具有良好的隔热性能、吸噪性能,同时具有较小的密度。因此,三维多
孔材料在能源催化、生物医疗、石油化工、航空航天、建筑材料、国防军工领域具有广泛的应
用。现有三维多孔材料中,其骨架材料主要包括两类:固体微粒以及微纳米纤维。其中,以一
维纳米纤维或纳米线构成的三维多孔材料的主要制备方法如下(Y.Si,J.Yu,X.Tang,J.Ge 
and B.Ding,Ultralight nanofibre‑assembled  cellular aerogels  with 
superelasticity and multifunctionality.Nat.Commun.5,5802(2014);Z.Yu,B.Qin,
Z.Ma,J.Huang,S.Li,H.Zhao,H.Li,Y.Zhu,H.Wu,and S.Yu,Superelastic hard carbon 
nanofiber aerogels.Adv.Mater.1900651(2019)):首先将已制备的纤维或者纳米线分散
在液相中形成悬浮液,再通过胶凝或冷冻使之固化,最后将其进行冷冻干燥或者超临界萃
取除去溶剂,得到三维多孔材料。其存在的主要问题是,得到的三维材料中纤维较短,连续
性差,纤维之间的作用较小,造成其力学性能较差,并且制备工艺较繁琐,成本高。此外,
也有文献报道(M.K.Joshi,H.R.Pant,A.P.Tiwari,H.J.Kim,C.H.Park,C.S.Kim,Multi‑
layered macroporous three‑dimensional nanofibrous scaffold via a novel gas 
foaming technique.Chem.Eng.J.275,79–88(2015);J.Jiang,Z.Li,H.Wang,Y.Wang,
M.A.Carlson,M.J.Teusink,M.R.MacEwan,L.Gu,J.Xie,Expanded 3D nanofiber 
scaffolds:cell  penetration,neovascularization,and  host 
response.Adv.Healthc.Mater.5,2993‑3003(2016))将纤维膜置于溶液中,通过在溶液中
快速的生成气体使纤维膜膨胀,最后通过冷冻干燥、真空干燥或超临界萃取形成三维多孔
材料,但是该方法仍然存在制备过程复杂,成本高的问题。

发明内容

[0003] 针对现有技术的不足,本发明提供一种三维纤维骨架多孔材料及其制备方法。
[0004] 本发明的三维纤维骨架多孔材料孔隙率可调,孔隙率可达99%以上,具有各向异性的力学性能、高的压缩回弹性、低导热系数、良好的吸噪性能和防透气性能。
[0005] 本发明的制备方法简单、成本低、易于推广利用。
[0006] 本发明是通过如下技术方案实现的:
[0007] 一种三维纤维骨架多孔材料,所述的多孔材料是以纳米级或微米级纤维为骨架,纤维之间以无序或部分有序的方式排列,纤维之间形成纳米级、微米级或毫米级的孔道,纤
维直径为50nm‑1微米,三维纤维骨架多孔材料的平均孔径为50nm~10毫米,作为骨架的纤
维选自有机聚合物纤维、无机/有机聚合物复合纤维、无机纤维、有机/有机聚合物复合纤
维、无机/无机复合纤维中的一种。
[0008] 根据本发明优选的,作为骨架的纤维选自有机聚合物纤维或无机/有机聚合物复合纤维。
[0009] 有机聚合物纤维、无机/有机聚合物复合纤维、无机纤维、有机/有机聚合物复合纤维、无机/无机复合纤维按本领域的现有技术进行制备。
[0010] 根据本发明优选的,三维纤维骨架多孔材料的孔隙率为90%~99%。
[0011] 根据本发明优选的,三维纤维骨架多孔材料具有各向异性的拉伸强度和断裂伸长率。
[0012] 根据本发明优选的,三维纤维骨架多孔材料具有高的压缩回弹性。
[0013] 根据本发明优选的,三维纤维骨架多孔材料具有好的吸声性能和防水透气性。
[0014] 本发明的三维纤维骨架多孔材料在液体中表面形成液膜,内部形成封闭空间,可长时间漂浮在液体表面而不下沉,液体根据三维纤维骨架多孔材料的种类进行选择。
[0015] 本发明的三维纤维骨架多孔材料在孔道中充满液体的情况下,通过施加外力将液体压出,形成二维多孔纤维膜。
[0016] 本发明的三维纤维骨架多孔材料在惰性气氛下进行煅烧转变为三维多孔材料或三维多孔碳/无机物复合材料
[0017] 在惰性气氛下进行煅烧碳化按本领域的常规技术进行。
[0018] 上述三维纤维骨架多孔材料的制备方法,包括步骤如下:
[0019] a、将二维多孔材料浸入溶液中后取出或向二维材料表面滴加溶液,使二维材料完全被液体浸润,在纤维膜表面形成液膜;
[0020] b、通过物理或化学方式使二维多孔材料所填充的液体内部生成气体;
[0021] c、二维多孔材料在气体压力作用下逐渐膨胀,形成三维纤维骨架多孔材料;
[0022] d、干燥三维纤维骨架多孔材料。
[0023] 本发明中2D多孔材料向3D多孔材料的转变过程包括二维多孔材料表面液膜的形成,通过化学或物理方式使二维多孔材料填充液体内部生成气体,二维材料在气体压力作
用下的膨胀,液体从体系中的去除(干燥)等步骤。
[0024] 根据本发明优选的,步骤a中,二维多孔材料的成型方式为湿法纺丝干法纺丝、喷吹、离心甩丝或静电纺丝,二维多孔材料直接在收集基底上面形成二维纤维膜、纤维毯、纤
维毡,或通过对纤维进行后处理形成由纤维构筑的二维多孔材料。
[0025] 根据本发明优选的,步骤a中,二维多孔材料的成型方式为静电纺丝,静电纺丝为溶液静电纺丝方法或熔融静电纺丝方法。
[0026] 根据本发明优选的,步骤a中,二维多孔材料成型前的溶胶前驱体为高分子溶液或熔体、高分子和无机化合物混合溶液或溶胶、无机化合物溶液或溶胶。
[0027] 根据本发明优选的,步骤a中,二维多孔材料成型前的溶胶前驱体为高分子溶液或熔体、高分子和无机化合物混合溶液或溶胶。
[0028] 步骤a中,溶液中含有可产生气体的化合物。
[0029] 根据本发明优选的,步骤a中,纤维膜表面形成的液膜为水基溶液膜,水基溶液包括水溶液或水/有机溶剂混合溶液。
[0030] 根据本发明优选的,步骤b中,化学生成气体的方式为过化氢的催化分解、氢化钠的催化分解或碳酸氢铵的分解。
[0031] 根据本发明优选的,步骤b中,通过化学反应生成的气体为无毒的氧气、氢气或二氧化碳。
[0032] 根据本发明优选的,步骤b中,用于催化化学反应并生成气体的催化剂可预先加入制备二维多孔材料的溶胶中,并通过纺丝保留在二维多孔材料的纤维中,或通过加入形成
液膜的溶液中引入。
[0033] 根据本发明优选的,步骤b中,产生气体的方式为过氧化氢的催化分解产生氧气时,催化剂为含锆化合物、氯化、氯化亚铁。
[0034] 进一步优选的,含锆化合物为氢氧化锆或氧氯化锆。
[0035] 根据本发明优选的,步骤b中,产生气体的方式为过氧化氢的分解产生氧气时,在性气体条件下催化加快气体的生成和纤维膜的膨胀。
[0036] 根据本发明优选的,步骤b中,产生气体的方式为硼氢化钠的催化分解产生氢气时,在酸性气体条件下催化加快气体的生成和纤维膜的膨胀。
[0037] 根据本发明优选的,步骤b中,产生气体的方式为碳酸氢铵的分解产生气、水以及二氧化碳时,加热加快气体的生成和纤维膜的膨胀。
[0038] 根据本发明优选的,步骤d中,干燥方式为常压干燥、冷冻干燥或超临界干燥。
[0039] 二维材料的膨胀及内部孔道的形成机理:由于二维材料是由多层纤维交联而成,当与相亲的液体接触时,液体在纤维表面浸润并在纤维之间形成液膜,当液相中物质因周
围环境的变化发生化学反应产生气体时,液膜的存在使气体不能逸出,在内部产生气体压
力,在该压力下纤维之间被拉伸并逐渐被气体填充,反应结束时形成的三维材料内部主要
被气体填充,表面液膜仍然存在。
[0040] 本发明的技术特点及优点:
[0041] 1、本发明提供的三维纤维骨架多孔材料,具有新型微观结构,材料密度小,孔隙率高,其孔隙率可通过调节液相中可分解物质的浓度进行控制,孔隙率为90%~99%。
[0042] 2、本发明提供的三维纤维骨架多孔材料具有各向异性的拉伸强度和断裂伸长率。
[0043] 3、本发明提供的三维纤维骨架多孔材料具有高的压缩回弹性、导热系数低。
[0044] 4、本发明提供的三维纤维骨架多孔材料具有好的吸声性能和防水透气性,综合性能优异。
[0045] 5、本发明的制备过程操作简单,绿色环保,适于大量制备。附图说明
[0046] 图1为实施例1的氢氧化锆@聚丙烯腈纳米纤维基三维多孔材料的实物图;
[0047] 图2为实施例1的氢氧化锆@聚丙烯腈纳米纤维基三维多孔材料的压缩回弹过程示意图;
[0048] 图3为实施例1的氢氧化锆@聚丙烯腈纳米纤维基三维多孔材料的应力‑应变曲线图;
[0049] 图4为实施例1的氢氧化锆@聚丙烯腈纳米纤维基三维多孔材料随温度的变化曲线图;
[0050] 图5为实施例1的氢氧化锆@聚丙烯腈纳米纤维基三维多孔材料对不同频率噪声的吸收性能曲线图;
[0051] 图6为实施例1的氢氧化锆@聚丙烯腈纳米纤维基三维多孔材料的不同放大倍率的扫描电子显微镜图片。
[0052] 图7为实施例5的使用碳酸氢铵和过氧化氢混合液为催化剂的聚酰胺‑6(尼龙‑6)纳米纤维基三维多孔材料的光学照片。
[0053] 图8为实施例6的使用碳酸氢铵和过氧化氢混合液为催化剂的聚丙烯腈纳米纤维基三维多孔材料的光学照片。
[0054] 图9为实施例8的二氧化纳米纤维基三维多孔材料的光学照片。

具体实施方式

[0055] 为使本发明更加通俗易懂,下面通过具体实施例对本发明做进一步说明,但本发明的保护范围不限于此。
[0056] 实施例1
[0057] 氢氧化锆@聚丙烯腈(PAN)复合纳米纤维膜的制备
[0058] 将1g聚丙烯腈(PAN)溶解于10mL N,N‑二甲基甲酰胺(DMF)中,机械搅拌使PAN完全溶解后,将1.5g四氯化锆溶解于上述体系中,搅拌至完全溶解,形成微黄色溶胶前驱体;
[0059] 对溶胶前驱体进行静电纺丝,正压为18kV,负压‑1.5kV,温度25℃,湿度小于25%,正负极间距为20cm;将静电纺丝得到的ZrOCl2@PAN纳米纤维膜放置在烧杯中,在氨气氛下
进行处理,得到Zr(OH)4/NH4Cl@PAN纳米纤维膜,然后于去离子水中浸泡15min去除NH4Cl,自
然条件下晾干,得到Zr(OH)4@PAN纳米纤维膜;
[0060] 氢氧化锆@聚丙烯腈(Zr(OH)4@PAN)纳米纤维基三维多孔材料的制备
[0061] 将Zr(OH)4@PAN纳米纤维膜表面均匀涂覆2mL质量浓度为30%的过氧化氢溶液,放置在氨气氛围中,得到Zr(OH)4@PAN纳米纤维基三维多孔材料,常温常压空气气氛条件下干
燥。
[0062] 实验例1:
[0063] 1、实施例1制得的氢氧化锆@聚丙烯腈(Zr(OH)4@PAN)纳米纤维基三维多孔材料光学照片如图1所示。
[0064] 2、三维多孔材料的压缩回弹过程示意图如图2所示,通过图2可以看出,三维多孔材料具有高的压缩回弹性。
[0065] 3、三维多孔材料的应力‑应变曲线图如图3所示,通过图3可以看出,三维多孔材料具有各向异性的力学性能,水平方向和垂直方向的强度分别为8935Pa和886Pa。
[0066] 4、三维多孔材料在不同温度下的导热系数如下表1所示,
[0067] 表1
[0068]
[0069] 三维多孔材料随温度的变化曲线如图4所示,通过表1和图4可以看出,三维多孔材料的热导率为0.042‑0.046W/(mK),导热系数小,隔热性能好。
[0070] 5、三维多孔材料对不同频率噪声的吸收性能曲线图如图5所示,说明三维多孔材料具有良好的吸噪性能。
[0071] 实施例2
[0072] 氢氧化锆@聚丙烯腈(PAN)复合纳米纤维膜的制备
[0073] 按实施例1的步骤进行。
[0074] 氢氧化锆@聚丙烯腈(Zr(OH)4@PAN)纳米纤维基三维多孔材料的制备
[0075] 取1g硼氢化钠粉末溶解于50mL去离子水,将氢氧化锆@聚丙烯腈纤维膜用硼氢化钠溶液均匀润湿,于醋酸气氛中使纤维膜转变为三维多孔材料,常温常压下干燥,得到氢氧
化锆@聚丙烯腈纳米纤维基三维多孔材料。
[0076] 实施例3
[0077] 氢氧化锆@聚丙烯腈(PAN)复合纳米纤维膜的制备
[0078] 按实施例1的步骤进行。
[0079] 氢氧化锆@聚丙烯腈(Zr(OH)4@PAN)纳米纤维基三维多孔材料的制备
[0080] 取1g碳酸氢铵溶解于50mL去离子水,将氢氧化锆@聚丙烯腈纤维膜均匀涂覆上碳酸氢铵溶液,放在加热板上进行加热,得到氢氧化锆@聚丙烯腈纳米纤维基三维多孔材料。
[0081] 实施例4
[0082] 聚酰胺‑6(尼龙‑6)纳米纤维纤维膜的制备
[0083] 将4g聚酰胺‑6(尼龙‑6)溶解于22.6mL质量分数为88%的甲酸溶液中,机械搅拌至完全溶解;以该溶液为前驱体通过静电纺丝制备聚酰胺‑6纳米纤维纤维膜,静电纺丝参数:
正压20kV,负压‑1.5kV,温度25℃,湿度小于25%,正负极间距为20cm。
[0084] 聚酰胺‑6(尼龙‑6)纳米纤维基三维多孔材料的制备
[0085] 取1g三氯化铁粉末溶解于50mL去离子水中,将纤维膜浸入FeCl3溶液中取出,向纤维膜上均匀涂覆2mL浓度为30%的过氧化氢溶液,置于氨气氛中使纤维膜转变为三维多孔
材料,常温常压条件下自然干燥,得到尼龙‑6纳米纤维基三维多孔材料。
[0086] 所制备的尼龙‑6三维多孔材料孔隙率约为97%,孔径为纳米级至毫米级,具有优良的压缩回弹性和力学强度。
[0087] 实施例5
[0088] 聚酰胺‑6(尼龙‑6)纳米纤维纤维膜的制备
[0089] 按实施例4的步骤进行。
[0090] 聚酰胺‑6(尼龙‑6)纳米纤维基三维多孔材料的制备
[0091] 取2.2g碳酸氢铵溶解于10mL去离子水中,再向上述溶液中加入10mL的30%的过氧化氢溶液形成混合体系。将聚酰胺‑6(尼龙‑6)纤维膜放置在120℃的加热板上,将培养皿倒
扣在纤维膜上方形成相对密封空间,随着过氧化氢和碳酸氢铵的受热分解,取出后常温常
压下干燥,形成聚酰胺‑6(尼龙‑6)纳米纤维基三维多孔材料。
[0092] 聚酰胺‑6(尼龙‑6)纳米纤维基三维多孔材料的光学照片见图7。
[0093] 所制备的聚酰胺‑6(尼龙‑6)纳米纤维基三维多孔材料的孔隙率约为97%,孔径为纳米至毫米级,具有优良的压缩回弹性和力学强度。
[0094] 实施例6
[0095] 聚丙烯腈纳米纤维基三维多孔材料的制备
[0096] 将1g聚丙烯腈溶解于10mL N,N二甲基甲酰胺中,磁力搅拌下完全溶解形成纺丝液;通过静电纺丝形成聚丙烯腈纳米纤维膜,纺丝条件:正压15kV,负压‑1.5kV,温度25℃,
湿度小于25%,正负极间距20cm;
[0097] 取2.2g碳酸氢铵溶解于10mL去离子水中,再向上述溶液中加入10mL的30%的过氧化氢溶液形成混合体系。将聚丙烯腈纤维膜放置在120℃的加热板上,将培养皿倒扣在纤维
膜上方形成相对密封空间,随着过氧化氢和碳酸氢铵的受热分解,取出后常温常压下干燥,
形成聚丙烯腈纳米纤维基三维多孔材料。
[0098] 聚丙烯腈纳米纤维基三维多孔材料的光学照片见图8。
[0099] 所制备的聚丙烯腈纳米纤维基三维多孔材料孔隙率约为97%,孔径为纳米至毫米级,具有优良的压缩回弹性和力学强度。
[0100] 实施例7
[0101] 聚甲基丙烯酸甲酯纳米纤维基三维多孔材料的制备
[0102] 将1g聚甲基丙烯酸甲酯溶解于12mL N,N二甲基甲酰胺中,磁力搅拌下完全溶解形成纺丝液;通过静电纺丝形成聚甲基丙烯酸甲酯纳米纤维膜,纺丝条件:正压20kV,负压‑
1.5kV,温度25℃,湿度小于25%,正负极间距为20cm;
[0103] 取1g三氯化铁粉末溶解于50mL去离子水和乙醇(体积比1:1)的混合溶液中,将聚甲基丙烯酸甲酯纤维膜浸入FeCl3溶液中取出,向纤维上均匀涂覆2mL 30%的过氧化氢溶
液,于氨气氛中使纤维膜转变为三维多孔材料,常温常压条件下自然干燥,得到聚甲基丙烯
酸甲酯纳米纤维基三维多孔材料。
[0104] 实施例8
[0105] 二氧化硅纳米纤维基三维多孔材料的制备
[0106] 将22.3mL的正硅酸四乙酯添加到19.8mL的去离子水中,此时在机械搅拌下向上述混合溶液中添加58.2μL磷酸,12h搅拌后,添加等质量的10%的聚乙烯醇溶液,继续搅拌2h
获得可纺性溶胶。
[0107] 静电纺丝制备SiO2/PVA纳米纤维膜,正压为18kV,注射器针头和箔之间的距离为19cm。将电纺制备的纳米纤维膜放置在弗炉中煅烧,以10℃/min的升温速率加热至800
℃,获得柔性SiO2纳米纤维膜。
[0108] 取1g FeCl3溶于50mL的去离子水中,将柔性SiO2纳米纤维膜浸润在FeCl3溶液中,自然干燥后,向纤维膜上均匀涂覆2mL 30%的过氧化氢溶液,于氨气气氛下将纤维膜转化
为三维多孔材料,常温常压下干燥,得到二氧化硅纳米纤维基三维多孔材料。
[0109] 二氧化硅纳米纤维基三维多孔材料的光学照片见图9。
[0110] 实施例9
[0111] 氢氧化锆@聚酰胺‑6(尼龙‑6)复合微米纤维基三维多孔材料的制备
[0112] 7.6g聚酰胺‑6(尼龙‑6)溶解于20.5g的甲酸和35g的乙酸中形成均匀稳定的溶胶,再将19.93g的醋酸锆溶液加入上述溶胶体系,混合均匀之后进行甩丝。
[0113] 将甩丝得到的微米级醋酸锆@聚酰胺‑6(尼龙‑6)微米纤维整理剪切成正方形纤维膜,向纤维膜上均匀涂覆2mL 30%的过氧化氢溶液,放置在氨气氛围下熏蒸,常温常压下干
燥,得到氢氧化锆@聚酰胺‑6(尼龙‑6)复合微米纤维基三维多孔材料。
[0114] 以上所述仅为本发明的实施例,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、
改进等,均应包含在本发明的权利要求范围之内。