会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Predicting joint positions
    • 预测联合职位
    • US08571263B2
    • 2013-10-29
    • US13050858
    • 2011-03-17
    • Jamie Daniel Joseph ShottonPushmeet KohliRoss Brook GirshickAndrew FitzgibbonAntonio Criminisi
    • Jamie Daniel Joseph ShottonPushmeet KohliRoss Brook GirshickAndrew FitzgibbonAntonio Criminisi
    • G06K9/00
    • G06F3/017G06K9/00362G06N5/025
    • Predicting joint positions is described, for example, to find joint positions of humans or animals (or parts thereof) in an image to control a computer game or for other applications. In an embodiment image elements of a depth image make joint position votes so that for example, an image element depicting part of a torso may vote for a position of a neck joint, a left knee joint and a right knee joint. A random decision forest may be trained to enable image elements to vote for the positions of one or more joints and the training process may use training images of bodies with specified joint positions. In an example a joint position vote is expressed as a vector representing a distance and a direction of a joint position from an image element making the vote. The random decision forest may be trained using a mixture of objectives.
    • 例如,描述关节位置的描述是为了在图像中找到人或动物(或其部分)的联合位置,以控制计算机游戏或用于其他应用。 在一个实施例中,深度图像的图像元素进行联合位置投票,使得例如描绘躯干的一部分的图像元素可以投射颈部关节,左膝关节和右膝关节的位置。 可以对随机决策林进行训练,以使图像元素能够对一个或多个关节的位置进行投票,并且训练过程可以使用具有指定关节位置的身体的训练图像。 在一个例子中,联合立场表决被表示为表示从投票的图像元素的联合位置的距离和方向的向量。 可以使用目标混合来训练随机决策林。
    • 3. 发明授权
    • Image segmentation using star-convexity constraints
    • 使用星形凸度约束的图像分割
    • US08498481B2
    • 2013-07-30
    • US12776082
    • 2010-05-07
    • Andrew BlakeVarun GulshanCarsten RotherAntonio Criminisi
    • Andrew BlakeVarun GulshanCarsten RotherAntonio Criminisi
    • G06K9/34
    • G06T7/11G06T7/194G06T2207/20101G06T2207/20168
    • Image segmentation using star-convexity constraints is described. In an example, user input specifies positions of one or more star centers in a foreground to be segmented from a background of an image. In embodiments, an energy function is used to express the problem of segmenting the image and that energy function incorporates a star-convexity constraint which limits the number of possible solutions. For example, the star-convexity constraint may be that, for any point p inside the foreground, all points on a shortest path (which may be geodesic or Euclidean) between the nearest star center and p also lie inside the foreground. In some examples continuous star centers such as lines are used. In embodiments a user may iteratively edit the star centers by adding brush strokes to the image in order to progressively change the star-convexity constraints and obtain an accurate segmentation.
    • 描述了使用星形凸度约束的图像分割。 在一个示例中,用户输入指定要从图像的背景分割的前景中的一个或多个星形中心的位置。 在实施例中,能量函数用于表示分割图像的问题,并且能量函数包含限制可能解决方案数量的星形 - 凸度约束。 例如,星凸约束可以是,对于前景中的任何点p,最近的星中心和p之间的最短路径上的所有点(可以是测地线或欧几里德)也位于前景内。 在一些示例中,使用诸如线的连续星形中心。 在实施例中,用户可以通过向图像中添加画笔笔触来迭代地编辑星形中心,以逐渐改变星形凸度约束并获得准确的分割。
    • 4. 发明授权
    • Image processing using geodesic forests
    • 使用测地森林进行图像处理
    • US08351654B2
    • 2013-01-08
    • US12431421
    • 2009-04-28
    • Antonio CriminisiToby Sharp
    • Antonio CriminisiToby Sharp
    • G06K9/00E04B7/08
    • G06K9/6215G06T11/001
    • Image processing using geodesic forests is described. In an example, a geodesic forest engine determines geodesic shortest-path distances between each image element and a seed region specified in the image in order to form a geodesic forest data structure. The geodesic distances take into account gradients in the image of a given image modality such as intensity, color, or other modality. In some embodiments, a 1D processing engine carries out 1D processing along the branches of trees in the geodesic forest data structure to form a processed image. For example, effects such as ink painting, edge-aware texture flattening, contrast-aware image editing, forming animations using geodesic forests and other effects are achieved using the geodesic forest data structure. In some embodiments the geodesic forest engine uses a four-part raster scan process to achieve real-time processing speeds and parallelization is possible in many of the embodiments.
    • 描述了使用测地森林进行图像处理。 在一个示例中,测地森林引擎确定每个图像元素与图像中指定的种子区域之间的测距最短路径距离,以形成测地森林数据结构。 测距距离考虑了给定图像形态(如强度,颜色或其他形式)图像中的渐变。 在一些实施例中,1D处理引擎沿着测地森林数据结构中的树的分支执行1D处理,以形成经处理的图像。 例如,使用测地森林数据结构实现诸如水墨绘画,边缘感知纹理平整,对比度感知图像编辑,使用测地森林形成动画等效果。 在一些实施例中,测地森林引擎使用四部分光栅扫描过程来实现实时处理速度,并且在许多实施例中并行化是可能的。
    • 6. 发明授权
    • Recognizing hand poses and/or object classes
    • 识别手姿势和/或对象类
    • US08103109B2
    • 2012-01-24
    • US11765264
    • 2007-06-19
    • John WinnAntonio CriminisiAnkur AgarwalThomas Deselaers
    • John WinnAntonio CriminisiAnkur AgarwalThomas Deselaers
    • G06K9/62
    • G06K9/00355G06F3/017G06F3/0425G06K9/6282
    • There is a need to provide simple, accurate, fast and computationally inexpensive methods of object and hand pose recognition for many applications. For example, to enable a user to make use of his or her hands to drive an application either displayed on a tablet screen or projected onto a table top. There is also a need to be able to discriminate accurately between events when a user's hand or digit touches such a display from events when a user's hand or digit hovers just above that display. A random decision forest is trained to enable recognition of hand poses and objects and optionally also whether those hand poses are touching or not touching a display surface. The random decision forest uses image features such as appearance, shape and optionally stereo image features. In some cases, the training process is cost aware. The resulting recognition system is operable in real-time.
    • 需要为许多应用提供简单,准确,快速和计算上便宜的对象和手姿态识别方法。 例如,为了使用户能够利用他或她的手来驱动显示在平板电脑屏幕上或投影到桌面上的应用程序。 当用户的手或数字在该显示器的正上方移动时,当用户的手或数字触发这样的显示时,还需要能够精确地区分事件之间的事件。 训练随机决策林以识别手姿势和物体,并且还可以选择性地确定那些手姿势是触摸还是不接触显示表面。 随机决策林使用图像特征,如外观,形状和可选的立体图像特征。 在某些情况下,培训过程是意识到成本。 所得到的识别系统可以实时操作。
    • 7. 发明申请
    • Parallel Processing for Distance Transforms
    • 距离变换的并行处理
    • US20110141121A1
    • 2011-06-16
    • US12635861
    • 2009-12-11
    • Toby SharpAntonio Criminisi
    • Toby SharpAntonio Criminisi
    • G06F15/80
    • G06T17/10A63F2300/1087G06F17/10G06T5/30G06T2207/20041
    • Parallel processing for distance transforms is described. In an embodiment a raster scan algorithm is used to compute a distance transform such that each image element of a distance image is assigned a distance value. This distance value is a shortest distance from the image element to the seed region. In an embodiment two threads execute in parallel with a first thread carrying out a forward raster scan over the distance image and a second thread carrying out a backward raster scan over the image. In an example, a thread pauses when a cross-over condition is met until the other thread meets the condition after which both threads continue. In embodiments distances may be computed in Euclidean space or along geodesics defined on a surface. In an example, four threads execute two passes in parallel with each thread carrying out a raster scan over a different quarter of the image.
    • 描述了距离变换的并行处理。 在一个实施例中,光栅扫描算法用于计算距离变换,使得距离图像的每个图像元素被分配距离值。 该距离值是从图像元素到种子区域的最短距离。 在一个实施例中,两个线程与第一线程并行执行,该第一线程在距离图像上执行正向光栅扫描,而第二线程在图像上执行向后光栅扫描。 在一个示例中,当满足交叉条件时,线程将暂停,直到另一个线程满足两个线程继续的条件为止。 在实施例中,距离可以在欧氏距离空间中或沿着表面上定义的测地线计算。 在一个示例中,四个线程与在每个图像的不同四分之一处执行光栅扫描的每个线程并行执行两个遍。
    • 8. 发明申请
    • Object Recognition Using Textons and Shape Filters
    • 使用纹理和形状过滤器的对象识别
    • US20110064303A1
    • 2011-03-17
    • US12944130
    • 2010-11-11
    • John WinnCarsten RotherAntonio CriminisiJamie Shotton
    • John WinnCarsten RotherAntonio CriminisiJamie Shotton
    • G06K9/62
    • G06K9/3233G06K9/4604
    • Given an image of structured and/or unstructured objects, semantically meaningful areas are automatically partitioned from the image, each area labeled with a specific object class. Shape filters are used to enable capturing of some or all of the shape, texture, and/or appearance context information. A shape filter comprises one or more regions of arbitrary shape, size, and/or position within a bounding area of an image, paired with a specified texton. A texton comprises information describing the texture of a patch of surface of an object. In a training process a sub-set of possible shape filters is selected and incorporated into a conditional random field model of object classes. The conditional random field model is then used for object detection and recognition.
    • 给定结构化和/或非结构化对象的图像,语义上有意义的区域将自动从图像分割,每个区域都标有特定的对象类。 形状滤波器用于使得能够捕获部分或全部形状,纹理和/或外观上下文信息。 形状滤波器包括与指定的文本配对的图像的边界区域内的任意形状,大小和/或位置的一个或多个区域。 文本包括描述对象的表面的纹理的信息。 在训练过程中,选择可能的形状滤波器的子集,并将其合并到对象类的条件随机场模型中。 然后将条件随机场模型用于对象检测和识别。
    • 10. 发明申请
    • Remote Workspace Sharing
    • 远程工作区共享
    • US20080184124A1
    • 2008-07-31
    • US11669107
    • 2007-01-30
    • Ankur AgarwalAntonio CriminisiWilliam BuxtonAndrew BlakeAndrew Fitzgibbon
    • Ankur AgarwalAntonio CriminisiWilliam BuxtonAndrew BlakeAndrew Fitzgibbon
    • G06F3/048
    • G06Q10/10H04N7/15
    • Existing remote workspace sharing systems are difficult to use. For example, changes made on a common work product by one user often appear abruptly on displays viewed by remote users. As a result the interaction is perceived as unnatural by the users and is often inefficient. Images of a display of a common work product are received from a camera at a first location. These images may also comprise information about objects between the display and the camera such as a user's hand editing a document on a tablet PC. These images are combined with images of the shared work product and displayed at remote locations. Advance information about remote user actions is then visible and facilitates collaborative mediation between users. Depth information may be used to influence the process of combining the images.
    • 现有的远程工作区共享系统很难使用。 例如,一个用户在公共工作产品上进行的更改通常会在远程用户查看的显示器上突然出现。 因此,互动被用户认为是不自然的,并且通常效率低下。 在第一位置从相机接收公共作品的显示的图像。 这些图像还可以包括关于显示器和相机之间的对象的信息,例如用户在平板PC上编辑文档的手。 这些图像与共享工作产品的图像组合,并在远程位置显示。 然后可以看到有关远程用户操作的高级信息,并促进用户之间的协作中介。 深度信息可以用于影响组合图像的过程。