会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Opcode Space Minimizing Architecture Utilizing Instruction Address to Indicate Upper Address Bits
    • 操作码空间最小化使用指令地址来指示上位地址的架构
    • US20120084535A1
    • 2012-04-05
    • US12894697
    • 2010-09-30
    • Mark J. HickeyAdam J. MuffMatthew R. TubbsCharles D. Wait
    • Mark J. HickeyAdam J. MuffMatthew R. TubbsCharles D. Wait
    • G06F9/30
    • G06F9/30098G06F9/3016G06F9/30181G06F9/345G06F9/3824
    • Due to the ever expanding number of registers and new instructions in modern microprocessor cores, the address widths present in the instruction encoding continue to widen, and fewer instruction opcodes are available, making it more difficult to add new instructions to existing architectures without resorting to inelegant tricks that have drawbacks such as source destructive operations. The disclosed invention utilizes specialized decode and address calculation hardware that concatenates a fixed number of least significant bits of the instruction address onto the upper address bits of each register address portion contained in the instruction, yielding the full register address, instead of providing the full register address widths for every register used in the instruction. This frees up valuable opcode space for other instructions and avoids compiler complexity. This aligns nicely with how most loops are unrolled in assembly language, where independent operations are near each other in memory.
    • 由于现代微处理器内核中的寄存器数量和新指令的数量不断增加,指令编码中存在的地址宽度不断扩大,更少的指令操作码可用,使得更难于将现有架构的新指令添加到现有的架构中,而无需使用不正当的 具有诸如源破坏性操作等缺点的技巧。 所公开的发明利用专门的解码和地址计算硬件,其将指令地址的固定数目的最低有效位连接到包含在指令中的每个寄存器地址部分的高地址位,从而产生完整寄存器地址,而不是提供完整寄存器 指令中使用的每个寄存器的地址宽度。 这释放了其他指令的有价值的操作码空间,避免了编译器的复杂性。 这很好地与汇编语言中大多数循环展开的方式保持一致,独立操作在内存中彼此靠近。
    • 7. 发明授权
    • Opcode space minimizing architecture utilizing a least significant portion of an instruction address as upper register address bits
    • 操作码空间最小化结构,利用指令地址的最低有效部分作为高位寄存器地址位
    • US09075599B2
    • 2015-07-07
    • US12894697
    • 2010-09-30
    • Mark J. HickeyAdam J. MuffMatthew R. TubbsCharles D. Wait
    • Mark J. HickeyAdam J. MuffMatthew R. TubbsCharles D. Wait
    • G06F9/345G06F9/30G06F9/38
    • G06F9/30098G06F9/3016G06F9/30181G06F9/345G06F9/3824
    • Due to the ever expanding number of registers and new instructions in modern microprocessor cores, the address widths present in the instruction encoding continue to widen, and fewer instruction opcodes are available, making it more difficult to add new instructions to existing architectures without resorting to inelegant tricks that have drawbacks such as source destructive operations. The disclosed invention utilizes specialized decode and address calculation hardware that concatenates a fixed number of least significant bits of the instruction address onto the most significant side of each register address portion contained in the instruction, yielding the full register address, instead of providing the full register address widths for every register used in the instruction. This frees up valuable opcode space for other instructions and avoids compiler complexity. This aligns nicely with how most loops are unrolled in assembly language, where independent operations are near each other in memory.
    • 由于现代微处理器内核中的寄存器数量和新指令的数量不断增加,指令编码中存在的地址宽度不断扩大,更少的指令操作码可用,使得更难于将现有架构的新指令添加到现有的架构中,而无需使用不正当的 具有诸如源破坏性操作等缺点的技巧。 所公开的发明利用专门的解码和地址计算硬件,其将指令地址的固定数量的最低有效位连接到包含在指令中的每个寄存器地址部分的最高有效侧,从而产生完整寄存器地址,而不是提供完整寄存器 指令中使用的每个寄存器的地址宽度。 这释放了其他指令的有价值的操作码空间,避免了编译器的复杂性。 这很好地与汇编语言中大多数循环展开的方式保持一致,独立操作在内存中彼此靠近。
    • 8. 发明申请
    • VARIABLE LATENCY MEMORY DELAY IMPLEMENTATION
    • 可变延迟内存延迟执行
    • US20130185477A1
    • 2013-07-18
    • US13352619
    • 2012-01-18
    • Victor A. AcuñaDale L. ElsonMark J. HickeyGalen A. LyleIbrahim A. Ouda
    • Victor A. AcuñaDale L. ElsonMark J. HickeyGalen A. LyleIbrahim A. Ouda
    • G06F12/00
    • G06F11/263
    • A method includes receiving, from a processor, a first read request mapped including a first read request address to a first memory location of a register array and a second read request including a second read request address to a second memory location of a register array. The method includes assigning a first simulated time delay to the first read request and assigning a second simulated time delay to the second read request. The method includes, in response to a first elapsed time being equal to the first simulated time delay, outputting a first read request response including first data. The first elapsed time commences upon receipt of the first read request. The method includes, in response to a second elapsed time being equal to the second simulated time delay, outputting a second read request response including second data. The second elapsed time commences upon receipt of the second read request.
    • 一种方法包括从处理器接收包括第一读取请求地址的第一读取请求到寄存器阵列的第一存储器位置以及包括第二读取请求地址的第二读取请求到寄存器阵列的第二存储器位置。 该方法包括将第一模拟时间延迟分配给第一读取请求并将第二模拟时间延迟分配给第二读取请求。 该方法包括响应于第一经过时间等于第一模拟时间延迟,输出包括第一数据的第一读请求响应。 第一次经过的时间在收到第一个读取请求后开始。 该方法包括响应于第二经过时间等于第二仿真时间延迟,输出包括第二数据的第二读请求响应。 第二个经过时间在收到第二个读取请求后开始。