会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Preparation of nanoparticles with narrow luminescence
    • 制备具有窄发光的纳米颗粒
    • US08951439B2
    • 2015-02-10
    • US13608055
    • 2012-09-10
    • Michael Alan SchreuderPeter Neil Taylor
    • Michael Alan SchreuderPeter Neil Taylor
    • C01B21/06C09K11/64C09K11/62C09K11/06
    • C09K11/06Y10S977/813Y10S977/815
    • A population of light-emissive nitride nanoparticles has a photoluminescence quantum yield of at least 10% and an emission spectrum having a full width at half maximum intensity (FWHM) of less than 100 nm. One suitable method of producing light-emissive nitride nanoparticles comprises a first stage of heating a reaction mixture consisting essentially of nanoparticle precursors in a solvent, the nanoparticle precursors including at least one metal-containing precursor and at least one first nitrogen-containing precursor, and maintaining the reaction mixture at a temperature to seed nanoparticle growth. It further comprises a second stage of adding at least one second nitrogen-containing precursor to the reaction mixture thereby to promote nanoparticle growth.
    • 发光氮化物纳米颗粒群的光致发光量子产率至少为10%,发射光谱具有半峰强度(FWHM)的全宽小于100nm。 制备发光氮化物纳米颗粒的一种合适的方法包括:在溶剂中加热基本上由纳米颗粒前体组成的反应混合物的第一阶段,所述纳米颗粒前体包括至少一种含金属前体和至少一种第一含氮前体,以及 将反应混合物保持在使纳米颗粒生长的温度。 其还包括向反应混合物中加入至少一个第二含氮前体的第二阶段,从而促进纳米颗粒的生长。
    • 4. 发明申请
    • PREPARATION OF NANOPARTICLES WITH NARROW LUMINESCENCE
    • 具有纳米光致发光的纳米颗粒的制备
    • US20130062565A1
    • 2013-03-14
    • US13608055
    • 2012-09-10
    • Michael Alan SCHREUDERPeter Neil TAYLOR
    • Michael Alan SCHREUDERPeter Neil TAYLOR
    • C09K11/06C09K11/65B82Y30/00B82Y40/00
    • C09K11/06Y10S977/813Y10S977/815
    • A population of light-emissive nitride nanoparticles has a photoluminescence quantum yield of at least 10% and an emission spectrum having a full width at half maximum intensity (FWHM) of less than 100 nm. One suitable method of producing light-emissive nitride nanoparticles comprises a first stage of heating a reaction mixture consisting essentially of nanoparticle precursors in a solvent, the nanoparticle precursors including at least one metal-containing precursor and at least one first nitrogen-containing precursor, and maintaining the reaction mixture at a temperature to seed nanoparticle growth. It further comprises a second stage of adding at least one second nitrogen-containing precursor to the reaction mixture thereby to promote nanoparticle growth.
    • 发光氮化物纳米颗粒群的光致发光量子产率至少为10%,发射光谱具有半峰强度(FWHM)的全宽小于100nm。 制备发光氮化物纳米颗粒的一种合适的方法包括:在溶剂中加热基本上由纳米颗粒前体组成的反应混合物的第一阶段,所述纳米颗粒前体包括至少一种含金属前体和至少一种第一含氮前体,以及 将反应混合物保持在使纳米颗粒生长的温度。 其还包括向反应混合物中加入至少一个第二含氮前体的第二阶段,从而促进纳米颗粒的生长。
    • 6. 发明授权
    • II-III-N semiconductor nanoparticles and method of making same
    • II-III-N半导体纳米颗粒及其制备方法
    • US08900489B2
    • 2014-12-02
    • US13188713
    • 2011-07-22
    • Peter Neil TaylorJonathan HeffernanStewart Edward HooperTim Michael Smeeton
    • Peter Neil TaylorJonathan HeffernanStewart Edward HooperTim Michael Smeeton
    • H01B1/02C09K11/62H01L31/032
    • H01L33/06C01B21/0615C01B21/0632C01B21/072C09K11/623H01L31/032H01L33/26Y02E10/549Y10S977/773
    • The present application provides nitride semiconductor nanoparticles, for example nanocrystals, made from a new composition of matter in the form of a novel compound semiconductor family of the type group II-III-N, for example ZnGaN, ZnInN, ZnInGaN, ZnAlN, ZnAlGaN, ZnAlInN and ZnAlGaInN. This type of compound semiconductor nanocrystal is not previously known in the prior art. The invention also discloses II-N semiconductor nanocrystals, for example ZnN nanocrystals, which are a subgroup of the group II-III-N semiconductor nanocrystals. The composition and size of the new and novel II-III-N compound semiconductor nanocrystals can be controlled in order to tailor their band-gap and light emission properties. Efficient light emission in the ultraviolet-visible-infrared wavelength range is demonstrated. The products of this invention are useful as constituents of optoelectronic devices such as solar cells, light emitting diodes, laser diodes and as a light emitting phosphor material for LEDs and emissive EL displays.
    • 本申请提供了氮化物半导体纳米颗粒,例如纳米晶体,其由II-III-N型新型化合物半导体族的新组合物形成,例如ZnGaN,ZnInN,ZnInGaN,ZnAlN,ZnAlGaN, ZnAlInN和ZnAlGaInN。 这种类型的化合物半导体纳米晶体在现有技术中不是先前已知的。 本发明还公开了作为II-III-N族半导体纳米晶体的亚组的II-N半导体纳米晶体,例如ZnN纳米晶体。 可以控制新型和新型II-III-N化合物半导体纳米晶体的组成和尺寸,以便调整其带隙和发光性能。 证明了紫外 - 可见红外波长范围内的高效发光。 本发明的产品可用作诸如太阳能电池,发光二极管,激光二极管以及用作LED和发光EL显示器的发光磷光体材料的光电器件的组成。
    • 8. 发明申请
    • II-III-V COMPOUND SEMICONDUCTOR
    • II-III-V化合物半导体
    • US20120025139A1
    • 2012-02-02
    • US13187644
    • 2011-07-21
    • Peter Neil TAYLORJonathan HEFFERNANStewart Edward HOOPERTim Michael SMEETON
    • Peter Neil TAYLORJonathan HEFFERNANStewart Edward HOOPERTim Michael SMEETON
    • C09K11/54C01B21/00
    • C09K11/623C09K11/625C09K11/642H01L31/032
    • The present application provides a new composition of matter in the form of a new compound semiconductor family of the type group Zn-(II)-III-N, where III denotes one or more elements in Group III of the periodic table and (II) denotes one or more optional further elements in Group II of the periodic table. Members of this family include for example, ZnGaN, ZnInN, ZnInGaN, ZnAlN, ZnAlGaN, ZnAlInN or ZnAlGaInN. This type of compound semiconductor material is not previously known in the prior art.The composition of the new Zn-(II)-III-N compound semiconductor material can be controlled in order to tailor its band-gap and light emission properties. Efficient light emission in the ultraviolet-visible-infrared wavelength range is demonstrated.The products of this invention are useful as constituents of optoelectronic devices such as solar cells, light emitting diodes, laser diodes and as a light emitting phosphor material for LEDs and emissive EL displays.
    • 本申请提供了新型的Zn-(II)-III-N型化合物半导体族的物质组成,其中III表示周期表第III族中的一种或多种元素,(II) 表示周期表第II族中的一个或多个任选的另外的元素。 该族的成员包括例如ZnGaN,ZnInN,ZnInGaN,ZnAlN,ZnAlGaN,ZnAlInN或ZnAlGaInN。 这种类型的化合物半导体材料在现有技术中不是先前已知的。 可以控制新的Zn-(II)-III-N化合物半导体材料的组成以便调整其带隙和发光性能。 证明了紫外 - 可见红外波长范围内的高效发光。 本发明的产品可用作诸如太阳能电池,发光二极管,激光二极管以及用作LED和发光EL显示器的发光磷光体材料的光电器件的组成。
    • 10. 发明授权
    • Display
    • 显示
    • US07686493B2
    • 2010-03-30
    • US11865110
    • 2007-10-01
    • Rakesh RoshanPeter Neil TaylorDavid James Montgomery
    • Rakesh RoshanPeter Neil TaylorDavid James Montgomery
    • F21V7/04H01J1/62G02F1/1335
    • B82Y20/00G02F1/133514G02F1/133603G02F2001/133614G02F2202/046G02F2202/36
    • A display comprises a light source and an image display panel disposed in an optical path from the light source. The light source comprises a primary light source for illuminating a re-emission material which comprises at least a first nanophosphor material for, when illuminated by light from the primary light source, re-emitting light in a first wavelength range different from the emission wavelength range of the primary light source. The image display panel comprises a first filter having a first narrow passband or a first narrow absorption band, the first narrow passband or first narrow absorption band being aligned or substantially aligned with the first wavelength range. The combination of a narrow wavelength range emitted by the first nanophosphor material and the narrow passband or narrow absorption band of the filter allows a display with high efficiency and a high NTSC ratio to be obtained.
    • 显示器包括光源和设置在光源的光路中的图像显示面板。 光源包括用于照射再发射材料的初级光源,其包括至少第一纳米荧光体材料,当用来自初级光源的光照射时,重新发射与发射波长范围不同的第一波长范围的光 的主要光源。 图像显示面板包括具有第一窄通带或第一窄吸收带的第一滤波器,第一窄通带或第一窄吸收带与第一波长范围对准或基本对齐。 由第一纳米荧光体材料发射的窄波长范围与滤光器的窄通带或窄吸收带的组合允许获得具有高效率和高NTSC比的显示。