会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Millimeter-wave cascode amplifier gain boosting technique
    • 毫米波共源共栅放大器增益提升技术
    • US07489201B2
    • 2009-02-10
    • US11801363
    • 2007-05-09
    • Saikat SarkarPadmanava SenStephane PinelJoy Laskar
    • Saikat SarkarPadmanava SenStephane PinelJoy Laskar
    • H03F3/04
    • H03F1/22H03F3/191H03F3/60H03F2200/181H03F2200/222H03F2200/318H03F2200/387
    • Disclosed is a gain boosting technique for use with millimeter-wave cascode amplifiers. The exemplary technique may be implemented using a 0.18 μm SiGe process (FT=140 GHz). It has also been shown that the technique is effective for CMOS processes with comparable FT. An exemplary gain-enhanced cascode stage was measured to have higher than 9 dB gain with a 1-dB bandwidth above 6 GHz with a DC power consumption of 13 mW. In addition, one cascode stage without gain boosting may be cascaded with two gain-boosted cascode amplifier stages to implement a three-stage LNA. The measured stable gain is higher than 24 dB at 60 GHz with a 3-dB bandwidth of 3.1 GHz for 25 mW of DC power consumption. It is believed that this is the first 60 GHz LNA with a higher than 20 dB gain using a 0.18 μm SiGe process.
    • 公开了一种用于毫米波共源共栅放大器的增益技术。 可以使用0.18μmSiGe工艺(FT = 140GHz)来实现示例性技术。 还已经表明,该技术对于具有相当的FT的CMOS工艺是有效的。 测量一个示例性的增益增益共源共栅级,具有高于9 dB的增益,1 GHz带宽高于6 GHz,直流功耗为13 mW。 另外,没有增益升压的一个级联级可以与两个增益升压的共源共栅放大器级级联以实现三级LNA。 测量的稳定增益在60 GHz时高于24 dB,对于25 mW的直流功耗,3.1 GHz的3 dB带宽。 相信这是使用0.18 mum SiGe工艺的第一个60 GHz LNA,具有高于20 dB的增益。
    • 4. 发明授权
    • High-speed pulse shaping filter systems and methods
    • 高速脉冲整形滤波系统及方法
    • US08473535B2
    • 2013-06-25
    • US12327279
    • 2008-12-03
    • Bevin George PerumanaArun RachamaduguStephane PinelJoy Laskar
    • Bevin George PerumanaArun RachamaduguStephane PinelJoy Laskar
    • G06F17/10
    • H03H15/00H03H2015/002
    • A first system and method relates to an analog current-mode method using branch systems. In the analog current-mode implementation, multiple branches systems can be scaled according to filter coefficients and switched using known data points. Positive coefficients can add current to the summing node, while negative coefficients can remove current from the summing node. Switches can be implemented with quick charge/discharge paths in order to operate at very high data rates. A second system and method relates to a digital look-up table based high-speed implementation. In the digital implementation, outputs can be pre-calculated as an n-bit output word that drives an n-bit DAC. Each bit of the n-bit word can then described as an independent function of the known data points. Each such function can be implemented as a high-speed combinational logic block. Both systems and methods enable the implementation of pulse shaping filters for multi-gigabit per second data transmission.
    • 第一系统和方法涉及使用分支系统的模拟电流模式方法。 在模拟电流模式实现中,可以根据滤波器系数对多个分支系统进行缩放,并使用已知的数据点进行切换。 正系数可以向求和节点添加电流,而负系数可以去除求和节点的电流。 开关可以通过快速充电/放电路径实现,以便以非常高的数据速率运行。 第二系统和方法涉及基于数字查找表的高速实现。 在数字实现中,可以将输出预先计算为驱动n位DAC的n位输出字。 n位字的每个位可以被描述为已知数据点的独立函数。 每个这样的功能可以被实现为高速组合逻辑块。 这两种系统和方法使得能够实现用于千兆位/秒数据传输的脉冲整形滤波器。
    • 10. 发明申请
    • HIGH-SPEED PULSE SHAPING FILTER SYSTEMS AND METHODS
    • 高速脉冲形状滤波器系统和方法
    • US20090140784A1
    • 2009-06-04
    • US12327279
    • 2008-12-03
    • Bevin George PERUMANAArun RachamaduguStephane PinelJoy Laskar
    • Bevin George PERUMANAArun RachamaduguStephane PinelJoy Laskar
    • H03L7/00H03K5/01
    • H03H15/00H03H2015/002
    • A first system and method relates to an analog current-mode method using branch systems. In the analog current-mode implementation, multiple branches systems can be scaled according to filter coefficients and switched using known data points. Positive coefficients can add current to the summing node, while negative coefficients can remove current from the summing node. Switches can be implemented with quick charge/discharge paths in order to operate at very high data rates. A second system and method relates to a digital look-up table based high-speed implementation. In the digital implementation, outputs can be pre-calculated as an n-bit output word that drives an n-bit DAC. Each bit of the n-bit word can then described as an independent function of the known data points. Each such function can be implemented as a high-speed combinational logic block. Both systems and methods enable the implementation of pulse shaping filters for multi-gigabit per second data transmission.
    • 第一系统和方法涉及使用分支系统的模拟电流模式方法。 在模拟电流模式实现中,可以根据滤波器系数对多个分支系统进行缩放,并使用已知的数据点进行切换。 正系数可以向求和节点添加电流,而负系数可以从求和节点去除电流。 开关可以通过快速充电/放电路径实现,以便以非常高的数据速率运行。 第二系统和方法涉及基于数字查找表的高速实现。 在数字实现中,可以将输出预先计算为驱动n位DAC的n位输出字。 n位字的每个位可以被描述为已知数据点的独立函数。 每个这样的功能可以被实现为高速组合逻辑块。 这两种系统和方法使得能够实现用于千兆位/秒数据传输的脉冲整形滤波器。