会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • SYSTEM AND METHOD FOR NON-INVASIVE PHOTOTHERMAL RADIOMETRIC MEASUREMENT
    • 非侵入式光电放射测量的系统和方法
    • US20100292547A1
    • 2010-11-18
    • US12782277
    • 2010-05-18
    • Andreas MandelisSergey Telenkov
    • Andreas MandelisSergey Telenkov
    • A61B5/1455
    • A61B5/01A61B5/0091A61B5/14532A61B5/7228
    • There is provided a glucose monitoring method and apparatus based on the principle of Wavelength-Modulated Differential Laser Photothermal Radiometry (WM-DPTR). Two intensity modulated laser beams operating in tandem at specific mid-infrared (IR) wavelengths and current-modulated synchronously by two electrical waveforms 180 degrees out-of-phase, are used to interrogate the tissue surface. The laser wavelengths are selected to absorb in the mid infrared range (8.5-10.5 μm) where the glucose spectrum exhibits a discrete absorption band. The differential thermal-wave signal generated by the tissue sample through modulated absorption between two specific wavelengths within the band (for example, the peak at 9.6 and the nearest baseline at 10.5 μm) lead to minute changes in sample temperature and to non-equilibrium blackbody radiation emission. This modulated emission is measured with a broadband infrared detector. The detector is coupled to a lock-in amplifier for signal demodulation. Any glucose concentration increases will be registered as differential photothermal signals above the fully suppressed signal baseline due to increased absorption at the probed peak or near-peak of the band at 9.6 μm at the selected wavelength modulation frequency. The emphasis is on the ability to monitor blood glucose levels in diabetic patients in a non-invasive, non-contacting manner with differential signal generation methods for real-time baseline corrections, a crucial feature toward precise and universal calibration (independent of person-to-person contact, skin, temperature or IR-emission variations) in order to offer accurate absolute glucose concentration readings.
    • 提供了基于波长调制差分激光光热辐射计(WM-DPTR)原理的葡萄糖监测方法和装置。 两个强度调制的激光束在特定的中红外(IR)波长下串联工作,并通过180度异相的两个电波同步电流调制,用于询问组织表面。 选择激光波长在中等红外范围(8.5-10.5μm)下吸收,其中葡萄糖光谱呈现离散的吸收带。 由组织样品通过带内两个特定波长之间的调节吸收产生的差分热波信号(例如,9.6处的峰值和10.5μm处的最接近的基线)导致样品温度和非平衡黑体的微小变化 辐射发射。 这种调制的发射是用宽带红外探测器测量的。 检测器耦合到锁定放大器进行信号解调。 任何葡萄糖浓度增加将被记录为高于完全抑制的信号基线上的差示光热信号,这是由于在所选波长调制频率处的9.6μm波段的探测峰值或近峰值处的吸收增加。 重点在于以非侵入式非接触方式监测糖尿病患者血糖水平的能力,使用差分信号生成方法进行实时基线校正,这是精确和通用校准的关键特征(独立于人 - 人员接触,皮肤,温度或红外发射变化),以提供准确的绝对葡萄糖浓度读数。
    • 3. 发明授权
    • Non-invasive biothermophotonic sensor for blood glucose monitoring
    • 用于血糖监测的非侵入式生物光电传感器
    • US07729734B2
    • 2010-06-01
    • US11368698
    • 2006-03-07
    • Andreas MandelisSergey Telenkov
    • Andreas MandelisSergey Telenkov
    • A61B5/145
    • A61B5/01A61B5/0091A61B5/14532A61B5/7228
    • There is provided a glucose monitoring method and apparatus based on the principle of Wavelength-Modulated Differential Laser Photothermal Radiometry (WM-DPTR). Two intensity modulated laser beams operating in tandem at specific mid-infrared (IR) wavelengths and current-modulated synchronously by two electrical waveforms 180 degrees out-of-phase, are used to interrogate the tissue surface. The laser wavelengths are selected to absorb in the mid infrared range (8.5-10.5 μm) where the glucose spectrum exhibits a discrete absorption band. The differential thermal-wave signal generated by the tissue sample through modulated absorption between two specific wavelengths within the band (for example, the peak at 9.6 and the nearest baseline at 10.5 μm) lead to minute changes in sample temperature and to non-equilibrium blackbody radiation emission. This modulated emission is measured with a broadband infrared detector. The detector is coupled to a lock-in amplifier for signal demodulation. Any glucose concentration increases will be registered as differential photothermal signals above the fully suppressed signal baseline due to increased absorption at the probed peak or near-peak of the band at 9.6 μm at the selected wavelength modulation frequency. The emphasis is on the ability to monitor blood glucose levels in diabetic patients in a non-invasive, non-contacting manner with differential signal generation methods for real-time baseline corrections, a crucial feature toward precise and universal calibration (independent of person-to-person contact, skin, temperature or IR-emission variations) in order to offer accurate absolute glucose concentration readings.
    • 提供了基于波长调制差分激光光热辐射计(WM-DPTR)原理的葡萄糖监测方法和装置。 两个强度调制的激光束在特定的中红外(IR)波长下串联工作,并通过180度异相的两个电波同步电流调制,用于询问组织表面。 选择激光波长在中等红外范围(8.5-10.5μm)下吸收,其中葡萄糖光谱呈现离散的吸收带。 由组织样品通过带内两个特定波长之间的调节吸收产生的差分热波信号(例如,9.6处的峰值和10.5μm处的最接近的基线)导致样品温度和非平衡黑体的微小变化 辐射发射。 这种调制的发射是用宽带红外探测器测量的。 检测器耦合到锁定放大器进行信号解调。 任何葡萄糖浓度增加将被记录为高于完全抑制的信号基线上的差示光热信号,这是由于在所选波长调制频率处的9.6μm波段的探测峰值或近峰值处的吸收增加。 重点在于以非侵入式非接触方式监测糖尿病患者血糖水平的能力,使用差分信号生成方法进行实时基线校正,这是精确和通用校准的关键特征(独立于人 - 人员接触,皮肤,温度或红外发射变化),以提供准确的绝对葡萄糖浓度读数。
    • 4. 发明授权
    • Laser photo-thermo-acoustic (PTA) frequency swept heterodyned lock-in depth profilometry imaging system
    • 激光光热声(PTA)频率扫描外差锁定深度轮廓测量成像系统
    • US07525661B2
    • 2009-04-28
    • US11058233
    • 2005-02-16
    • Andreas MandelisAlex VitkinSergey TelenkovYing Fan
    • Andreas MandelisAlex VitkinSergey TelenkovYing Fan
    • G01B9/02
    • G01N21/1702G01B21/085G01N21/4795G01N29/0609G01N29/07G01N29/11G01N29/46G01N2291/02475G01N2291/02872G01N2291/0421
    • A method and apparatus for biomedical subsurface imaging and measurement of thickness, elastic and optical properties of industrial and biomedical materials based on laser Photo-Thermo-Acoustic (PTA) frequency-swept heterodyne depth profilometry, In particular, the invention relates to biomedical imaging and measure of tissue and tumour thickness, L, speed of sound, cs, acoustic attenuation coefficient, γ, optical absorption coefficient, μa, and optical scattering coefficient, μs. The method and apparatus involves providing for a sample of the material to be characterized; irradiating the material for a selected period of time with an excitation waveform from a modulated optical excitation source wherein a photo-thermo-acoustic emission is responsively emitted from said solid; detecting said emitted photo-thermo-acoustic emission; processing the electronic signal to convert the frequency-domain signal into time-domain and perform depth profilometric imaging and determining thermoelastic and optical properties of the material sample.
    • 基于激光光热声(PTA)频扫外差深度轮廓测量法的工业和生物医学材料的厚度,弹性和光学性质的生物医学地下成像和测量的方法和装置,特别地,本发明涉及生物医学成像和 组织和肿瘤厚度的测量,L,声速,cs,声衰减系数,γ,光吸收系数,mua和光散射系数。 该方法和装置包括提供要表征的材料的样品; 用来自调制光激发源的激发波形照射材料一段选定的时间,其中从所述固体响应地发射光热声发射; 检测所述发射的光热声发射; 处理电子信号以将频域信号转换成时域并执行深度轮廓测量成像并确定材料样品的热弹性和光学性质。
    • 6. 发明授权
    • System and method for non-invasive photothermal radiometric measurement
    • 非侵入性光热辐射测量的系统和方法
    • US08452360B2
    • 2013-05-28
    • US12782277
    • 2010-05-18
    • Andreas MandelisSergey Telenkov
    • Andreas MandelisSergey Telenkov
    • A61B5/1455
    • A61B5/01A61B5/0091A61B5/14532A61B5/7228
    • There is provided a glucose monitoring method and apparatus based on the principle of Wavelength-Modulated Differential Laser Photothermal Radiometry (WM-DPTR). Two intensity modulated laser beams operating in tandem at specific mid-infrared (IR) wavelengths and current-modulated synchronously by two electrical waveforms 180 degrees out-of-phase, are used to interrogate the tissue surface. The laser wavelengths are selected to absorb in the mid infrared range (8.5-10.5 μm) where the glucose spectrum exhibits a discrete absorption band. The differential thermal-wave signal generated by the tissue sample through modulated absorption between two specific wavelengths within the band (for example, the peak at 9.6 and the nearest baseline at 10.5 μm) lead to minute changes in sample temperature and to non-equilibrium blackbody radiation emission. This modulated emission is measured with a broadband infrared detector. The detector is coupled to a lock-in amplifier for signal demodulation. Any glucose concentration increases will be registered as differential photothermal signals above the fully suppressed signal baseline due to increased absorption at the probed peak or near-peak of the band at 9.6 μm at the selected wavelength modulation frequency. The emphasis is on the ability to monitor blood glucose levels in diabetic patients in a non-invasive, non-contacting manner with differential signal generation methods for real-time baseline corrections, a crucial feature toward precise and universal calibration (independent of person-to-person contact, skin, temperature or IR-emission variations) in order to offer accurate absolute glucose concentration readings.
    • 提供了基于波长调制差分激光光热辐射计(WM-DPTR)原理的葡萄糖监测方法和装置。 两个强度调制的激光束在特定的中红外(IR)波长下串联工作,并通过180度异相的两个电波同步电流调制,用于询问组织表面。 选择激光波长在中红外范围(8.5-10.5μm)中吸收,其中葡萄糖光谱呈现离散的吸收带。 由组织样品通过带内两个特定波长之间的调节吸收产生的差分热波信号(例如,9.6处的峰值和10.5mum处的最接近的基线)导致样品温度和非平衡黑体的微小变化 辐射发射。 这种调制的发射是用宽带红外探测器测量的。 检测器耦合到锁定放大器进行信号解调。 任何葡萄糖浓度增加将被记录为高于完全抑制的信号基线上的差示光热信号,这是由于在所选波长调制频率处的9.6mum波段的探测峰值或近峰值处的吸收增加。 重点在于以非侵入式非接触方式监测糖尿病患者血糖水平的能力,使用差分信号生成方法进行实时基线校正,这是精确和通用校准的关键特征(独立于人 - 人员接触,皮肤,温度或红外发射变化),以提供准确的绝对葡萄糖浓度读数。
    • 7. 发明申请
    • Non-invasive biothermophotonic sensor for blood glucose monitoring
    • 用于血糖监测的非侵入式生物光电传感器
    • US20070213607A1
    • 2007-09-13
    • US11368698
    • 2006-03-07
    • Andreas MandelisSergey Telenkov
    • Andreas MandelisSergey Telenkov
    • A61B5/00
    • A61B5/01A61B5/0091A61B5/14532A61B5/7228
    • There is provided a glucose monitoring method and apparatus based on the principle of Wavelength-Modulated Differential Laser Photothermal Radiometry (WM-DPTR). Two intensity modulated laser beams operating in tandem at specific mid-infrared (IR) wavelengths and current-modulated synchronously by two electrical waveforms 180 degrees out-of-phase, are used to interrogate the tissue surface. The laser wavelengths are selected to absorb in the mid infrared range (8.5-10.5 μm) where the glucose spectrum exhibits a discrete absorption band. The differential thermal-wave signal generated by the tissue sample through modulated absorption between two specific wavelengths within the band (for example, the peak at 9.6 and the nearest baseline at 10.5 μm) lead to minute changes in sample temperature and to non-equilibrium blackbody radiation emission. This modulated emission is measured with a broadband infrared detector. The detector is coupled to a lock-in amplifier for signal demodulation. Any glucose concentration increases will be registered as differential photothermal signals above the fully suppressed signal baseline due to increased absorption at the probed peak or near-peak of the band at 9.6 μm at the selected wavelength modulation frequency. The emphasis is on the ability to monitor blood glucose levels in diabetic patients in a non-invasive, non-contacting manner with differential signal generation methods for real-time baseline corrections, a crucial feature toward precise and universal calibration (independent of person-to-person contact, skin, temperature or IR-emission variations) in order to offer accurate absolute glucose concentration readings.
    • 提供了基于波长调制差分激光光热辐射计(WM-DPTR)原理的葡萄糖监测方法和装置。 两个强度调制的激光束在特定的中红外(IR)波长下串联工作,并通过180度异相的两个电波同步电流调制,用于询问组织表面。 选择激光波长在中红外范围(8.5-10.5μm)中吸收,其中葡萄糖光谱呈现离散的吸收带。 由组织样品通过带内两个特定波长之间的调节吸收产生的差分热波信号(例如,9.6处的峰值和10.5mum处的最接近的基线)导致样品温度和非平衡黑体的微小变化 辐射发射。 用宽带红外探测器测量该调制的发射。 检测器耦合到锁定放大器进行信号解调。 任何葡萄糖浓度增加将被记录为高于完全抑制的信号基线上的差示光热信号,这是由于在所选波长调制频率处的9.6mum波段的探测峰值或近峰值处的吸收增加。 重点在于以非侵入式非接触方式监测糖尿病患者血糖水平的能力,使用差分信号生成方法进行实时基线校正,这是精确和通用校准的关键特征(独立于人 - 人员接触,皮肤,温度或红外发射变化),以提供准确的绝对葡萄糖浓度读数。
    • 8. 发明授权
    • Method and apparatus for differential phase optical coherence tomography
    • 差分相位光学相干断层扫描的方法和装置
    • US06665456B2
    • 2003-12-16
    • US10044421
    • 2002-01-11
    • Digant P. DaveThomas E. MilnerSergey Telenkov
    • Digant P. DaveThomas E. MilnerSergey Telenkov
    • G02B627
    • G01P5/26A61B5/0066A61B5/0261G01B9/0201G01B9/02027G01B9/02028G01B9/02045G01B9/02091G01B2290/45G01B2290/70G01N21/4795G01P5/001
    • One form of the present invention is a dual channel optical reflectometer composed of a birefringent path coupler and an optical source path that is optically connected to the path coupler. After entering the path coupler, light is split into birefringent reference and sample paths. The reference path is optically aligned with a first collimating lens, and the collimating lens is directed into a scanning delay line. There is also a birefringent optical sample path that is also optically connected to the path coupler. The sample path is optically aligned with a polarization channel separator/combiner and a lens, to focus and direct optical beams into the turbid sample. Light backscattered from the turbid sample is collected by the second lens and orthogonal polarization channels are reunited by the polarization channel combiner. An analog-to-digital converter is connected to the amplifier, and a computer is connected to the analog-to-digital converter to analyze the output.
    • 本发明的一种形式是由双折射路径耦合器和与光路连接器光学连接的光源路径组成的双通道光反射计。 进入路径耦合器后,光被分成双折射参考和采样路径。 参考路径与第一准直透镜光学对准,并且准直透镜被引导到扫描延迟线中。 还存在也光学地连接到路径耦合器的双折射光学样本路径。 采样路径与偏振通道分离器/组合器和透镜光学对准,以将光束聚焦并引导到混浊样品中。 来自浑浊样品的反向散射光由第二透镜收集,正交极化通道由偏振通道组合器重新团聚。 模数转换器连接到放大器,计算机连接到模拟数字转换器以分析输出。