会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Nuclear medical diagnostic device
    • 核医学诊断装置
    • US08232528B2
    • 2012-07-31
    • US12373015
    • 2006-09-19
    • Hiromichi Tonami
    • Hiromichi Tonami
    • G21K1/02
    • G01T1/2985A61B6/037G01T1/1603G01T1/1644
    • By simultaneously administering a chemical using a nuclear species releasing a single photon (a first chemical) and another chemical using a nuclear species releasing a positron to a subject, the cumulative distributions of the respective chemicals are monitored. A plural number of γ-ray detectors, which are circularly located, and a collimator covering some of the γ-ray detectors and rotates along the front face of the γ-ray detectors are provided. Also, an energy discriminating means for discriminating signals having a single photon γ-ray energy (first signals) from signals having annihilation γ-ray energy (second signals) among all of the signals detected by the detectors is provided. Further, the cumulative position of the first chemical is specified based on the signals corresponding to the γ-ray detectors covered with the rotating collimator from the first signals. On the other hand, the cumulative position of the second chemical is specified by determining the signal almost simultaneously observed form the second signals and the positions thereof on the detectors.
    • 通过使用释放单个光子的核物质(第一化学品)和使用释放正电子的核物质的另一种化学品同时施用化学品,监测各化学品的累积分布。 提供了多个圆形位置的γ射线检测器和覆盖一部分γ射线检测器并沿着γ射线检测器的前表面旋转的准直器。 此外,提供了一种能量鉴别装置,用于从由检测器检测的所有信号中具有湮灭γ射线能量的信号(第二信号)鉴别具有单个光子γ射线能量(第一信号)的信号。 此外,第一化学品的累积位置基于与由第一信号旋转的准直仪覆盖的γ射线检测器对应的信号来指定。 另一方面,通过确定从第二信号几乎同时观察到的信号及其在检测器上的位置来确定第二化学品的累积位置。
    • 4. 发明申请
    • PARTICLE RADIOTHERAPY APPARATUS
    • 颗粒放射治疗仪
    • US20110198502A1
    • 2011-08-18
    • US13124279
    • 2008-10-23
    • Hiromichi Tonami
    • Hiromichi Tonami
    • G01T1/20
    • A61N5/10A61N2005/1052A61N2005/1087
    • In a particle radiotherapy apparatus which has a passage for allowing movement of a particle beam, this invention provides a particle radiotherapy apparatus with high sensitivity for detection of annihilation radiation pairs even if there is a difference between a point where the particle beam loses energy and a position of a detector ring in a body axis direction of a patient. For the purpose of solving such a problem, the particle radiotherapy apparatus according to this invention includes an elliptic detector ring which is vertically long and is reversibly tiltable. Consequently, annihilation gamma ray pairs are detected with the single elliptic detector ring. Then, annihilation gamma ray pairs occurring inside the elliptic detector ring will be detected. In other words, all annihilation gamma ray pairs will impinge on the single elliptic detector ring at substantially right angles. This inhibits lowering of sensitivity for detection.
    • 在具有用于允许粒子束移动的通道的粒子放射治疗装置中,本发明提供了一种对于湮灭辐射对的检测具有高灵敏度的粒子放射治疗装置,即使在粒子束损耗能量的点与 检测器环位于患者身体轴线方向上的位置。 为了解决这个问题,根据本发明的粒子放射治疗装置包括垂直长且可逆地倾斜的椭圆形检测器环。 因此,用单个椭圆检测器环检测湮灭伽马射线对。 然后,将检测在椭圆检测器环内发生的湮灭伽马射线对。 换句话说,所有的湮灭伽马射线对将以基本上直角的方式撞击在单个椭圆形探测器环上。 这抑制了检测灵敏度的降低。
    • 5. 发明申请
    • MANUFACTURING METHOD OF SCATTERED RADIATION REMOVING GRID
    • 扫描辐射扫描网格的制造方法
    • US20110099790A1
    • 2011-05-05
    • US13001690
    • 2008-07-22
    • Hiromichi Tonami
    • Hiromichi Tonami
    • B23P11/00
    • G21K1/025Y10T29/49002Y10T29/49016Y10T29/49826
    • The invention includes disposing guide slit plate mechanisms fixed relative to one another, namely, parallel to and spaced apart from one another by a prescribed distance; fitting metal foils, which serve as X-ray absorbing substance provided between the guide slit plate mechanisms, parallel to primary X-rays; inserting both ends of the metal foils into the guide slit plate mechanisms; inserting, when applying tension evenly, a rod, which is sheathed in an elastic body, into holes formed in the metal foils on the tip sides of the metal foils beyond the inserted portions; and adopting a structure that ensures that the cross sectional shape of the elastic body sheathing the rod has a sufficient wall thickness in a direction in which the elastic body is compressed when tension is generated, and thereby eliminating any difference in the tension even if a spring constant k that is determined during compression is small and the amounts of compression are different.
    • 本发明包括布置相对于彼此固定的引导狭缝板机构,即彼此平行并间隔规定距离; 作为设置在引导狭缝板机构之间的平行于主X射线的X射线吸收物质的金属箔; 将金属箔的两端插入导向狭缝板机构中; 当将弹性体均匀地施加张力时,插入在金属箔的前端侧的金属箔中形成的孔超过插入部分; 并且采用这样一种结构,其确保了在产生张力时弹性体被压缩的方向上具有足够的壁厚的弹性体的横截面形状,从而消除了张力的任何差异,即使弹簧 在压缩期间确定的常数k小,并且压缩量不同。
    • 6. 发明授权
    • Nuclear medical diagnostic device
    • 核医学诊断装置
    • US07791030B2
    • 2010-09-07
    • US12376488
    • 2006-09-19
    • Hiromichi TonamiJunichi Ohi
    • Hiromichi TonamiJunichi Ohi
    • G01T1/166
    • G01T1/1644G01T1/1648
    • Parameters T1, T2, and K required by a scintillator array identification mechanism in a two-stage scintillator γ-ray detector (depth of interaction (DOI)) are accurately and easily determined. The parameters required by the scintillator array identification mechanism are determined with reference to a first signal count ratio, which is obtained by irradiating a γ-ray on each scintillator array with luminescence pulses in an incident depth direction of the γ-ray having different attenuation time during an inspection stage of the γ-ray detector single unit. Furthermore, a second signal count ratio is obtained by irradiating the γ-ray on a front surface of the γ-ray detector single unit, and then a third signal count ratio is obtained by irradiating the γ-ray on the front surface after the γ-ray detector single unit is installed in a PET device.
    • 在两级闪烁体γ射线检测器(相互作用深度(DOI))中的闪烁体阵列识别机构所需的参数T1,T2和K被精确且容易地确定。 闪烁体阵列识别机构所要求的参数参照第一信号计数比来确定,该第一信号计数比通过在具有不同衰减时间的γ射线的入射深度方向上照射每个闪烁体阵列上的γ射线 在γ射线检测器单元的检查阶段。 此外,通过在γ射线检测器单元的前表面上照射γ射线获得第二信号计数比,然后通过在γ射线之后照射前表面上的γ射线获得第三信号计数比 射线检测器单元安装在PET装置中。
    • 7. 发明授权
    • Method of manufacturing a radiation detector
    • 辐射探测器的制造方法
    • US07723691B2
    • 2010-05-25
    • US12299433
    • 2006-06-02
    • Hiromichi Tonami
    • Hiromichi Tonami
    • G01T1/20
    • G01T1/1644
    • In a method of manufacturing a radiation detector according to this invention, a lattice frame 40 is stored in a receptacle 50, and scintillators 1SF and 1SR are also stored therein. The lattice frame 40 and scintillators 1SF and 1SR are once taken out of the receptacle in a state of trial assembly as a two-stage scintillator block in trial assembly 54. The lattice frame 40 and scintillators 1SF and 1SR in trial assembly are stored in the receptacle 50 into which an optical binding material has been poured. This method can reduce trouble occurring in manufacture to realize a radiation detector simply.
    • 在制造根据本发明的放射线检测器的方法中,格架40被存储在容器50中,闪烁体1SF和1SR也被存储在其中。 在试验组合54中,格子框架40和闪烁体1SF和1SR在作为两级闪烁体块的试验组装状态下从容器中取出。在试验组装中的格架40和闪烁体1SF和1SR存储在 容器50,其中已经注入了光学粘结材料。 该方法可以减少制造过程中发生的故障,简单实现辐射探测器。
    • 8. 发明申请
    • HOLLOW GRID AND MANUFACTURING METHOD THEREOF
    • 中空网格及其制造方法
    • US20100006781A1
    • 2010-01-14
    • US12374972
    • 2006-08-25
    • Hiromichi Tonami
    • Hiromichi Tonami
    • G21F3/00B23P11/00
    • G21K1/025Y10T29/49826
    • A hollow grid that can be manufactured easily, capable of inhibiting the generation of moire fringes, and absorbing less transmitted X-rays is provided. The hollow grid uses no intermediate material that is capable of transmitting the X-rays. X-ray shielding members are located at intervals of an integral multiple of a pixel pitch of a two-dimensional radiation detector. The X-ray shielding members are held by adhering to the upper and lower wrapping members. Therefore, through a sensitivity correction, the structure, in which the generation of moire fringe is difficult, is provided. Since the hollow grid is assembled by means of an assembling jig, the intervals of the X-ray shielding members can be formed easily with high precision. The quality variation of the completed hollow grids is small, and the product precision is high.
    • 可以容易地制造能够抑制莫尔条纹的产生并吸收较少透射的X射线的空心格栅。 中空网格不使用能够传输X射线的中间材料。 X射线屏蔽构件位于二维辐射检测器的像素间距的整数倍的间隔处。 X射线屏蔽构件通过粘附到上部和下部包裹构件上而被保持。 因此,通过灵敏度校正,提供了难以产生莫尔条纹的结构。 由于中空格栅通过组装夹具组装,所以可以高精度地容易地形成X射线屏蔽部件的间隔。 完成的中空网格的质量变化小,产品精度高。
    • 9. 发明申请
    • METHOD OF MANUFACTURING A RADIATION DETECTOR
    • 制造辐射探测器的方法
    • US20090072157A1
    • 2009-03-19
    • US12299433
    • 2006-06-02
    • Hiromichi Tonami
    • Hiromichi Tonami
    • G01T1/20
    • G01T1/1644
    • In a method of manufacturing a radiation detector according to this invention, a lattice frame 40 is stored in a receptacle 50, and scintillators 1SF and 1SR are also stored therein. The lattice frame 40 and scintillators 1SF and 1SR are once taken out of the receptacle in a state of trial assembly as a two-stage scintillator block in trial assembly 54. The lattice frame 40 and scintillators 1SF and 1SR in trial assembly are stored in the receptacle 50 into which an optical binding material has been poured. This method can reduce trouble occurring in manufacture to realize a radiation detector simply.
    • 在制造根据本发明的放射线检测器的方法中,格架40被存储在容器50中,闪烁体1SF和1SR也被存储在其中。 在试验组合54中,格子框架40和闪烁体1SF和1SR在作为两级闪烁体块的试验组装状态下从容器中取出。在试验组装中的格架40和闪烁体1SF和1SR存储在 容器50,其中已经注入了光学粘结材料。 该方法可以减少制造过程中发生的故障,简单实现辐射探测器。