会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • Gate Stacks Including TaXSiYO for MOSFETS
    • 包括用于MOSFET的TaXSiYO的栅极堆叠
    • US20150041912A1
    • 2015-02-12
    • US14135381
    • 2013-12-19
    • Intermolecular, Inc.
    • Khaled AhmedFrank Greer
    • H01L21/28H01L27/092
    • H01L21/28158H01L21/0215H01L21/0228H01L21/28255H01L21/28264H01L21/8258H01L27/092H01L29/16H01L29/20H01L29/4966H01L29/513H01L29/517H01L29/665H01L29/6659H01L29/7833
    • Provided are field effect transistor (FET) assemblies and methods of forming thereof. An FET assembly may include a dielectric layer formed from tantalum silicon oxide and having the atomic ratio of silicon to tantalum and silicon (Si/(Ta+Si)) of less than 5% to provide a low trap density. The dielectric layer may be disposed over an interface layer, which is disposed over a channel region. The same type of the dielectric layer may be used a common gate dielectric of an nMOSFET (e.g., III-V materials) and a pMOSFET (e.g., germanium). The channel region may include one of indium gallium arsenide, indium phosphate, or germanium. The interface layer may include silicon oxide to provide a higher energy barrier. The dielectric layer may be formed using an atomic layer deposition technique by adsorbing both tantalum and silicon containing precursors on the deposition surface and then oxidizing both precursors in the same operation.
    • 提供场效应晶体管(FET)组件及其形成方法。 FET组件可以包括由钽氧化硅形成并且具有小于5%的硅与钽和硅(Si /(Ta + Si))的原子比的介电层以提供低陷阱密度。 电介质层可以设置在界面层上,该界面层设置在沟道区域上。 可以使用相同类型的电介质层的nMOSFET(例如,III-V材料)和pMOSFET(例如,锗)的公共栅极电介质。 沟道区可以包括砷化铟镓,磷酸铟或锗中的一种。 界面层可以包括氧化硅以提供更高的能量势垒。 可以使用原子层沉积技术,通过在沉积表面上吸附含有钽和硅的两种前体,然后在相同的操作中氧化两种前体来形成电介质层。
    • 8. 发明申请
    • Reduction of native oxides by annealing in reducing gas or plasma
    • 还原气体或等离子体中还原天然氧化物
    • US20150118828A1
    • 2015-04-30
    • US14068906
    • 2013-10-31
    • Intermolecular Inc.
    • Frank GreerAmol JoshiKevin KashefiAlbert Sanghyup LeeAbhijit PetheJ Watanabe
    • H01L21/28H01L21/02
    • H01L21/28158C23C16/0218C23C16/45525H01L21/02175H01L21/0228H01L21/28194H01L21/28238
    • Native oxide growth on germanium, silicon germanium, and InGaAs undesirably affects CET (capacitive equivalent thickness) and EOT (effective oxide thickness) of high-k and low-k metal-oxide layers formed on these semiconductors. Even if pre-existing native oxide is initially removed from the bare semiconductor surface, some metal oxide layers are oxygen-permeable in thicknesses below about 25 Å thick. Oxygen-containing species used in the metal-oxide deposition process may diffuse through these permeable layers, react with the underlying semiconductor, and re-grow the native oxide. To eliminate or mitigate this re-growth, the substrate is exposed to a gas or plasma reductant (e.g., containing hydrogen). The reductant diffuses through the permeable layers to react with the re-grown native oxide, detaching the oxygen and leaving the un-oxidized semiconductor. The reduction product(s) resulting from the reaction may then be removed from the substrate (e.g., driven off by heat).
    • 在锗,硅锗和InGaAs上的天然氧化物生长不利地影响在这些半导体上形成的高k和低k金属氧化物层的CET(电容等效厚度)和EOT(有效氧化物厚度)。 即使预先存在的原生氧化物最初从裸露的半导体表面去除,一些金属氧化物层的厚度可以在大约25埃的厚度下透氧。 在金属氧化物沉积工艺中使用的含氧物质可以扩散通过这些可渗透层,与下面的半导体反应,并重新生长天然氧化物。 为了消除或减轻这种再生长,将基底暴露于气体或等离子体还原剂(例如含有氢气)中。 还原剂通过可渗透层扩散以与再生的天然氧化物反应,分离氧并留下未氧化的半导体。 然后可以从反应物中除去由反应产生的还原产物(例如,通过加热驱除)。
    • 9. 发明授权
    • Combinatorially variable etching of stacks including two dissimilar materials for etch pit density inspection
    • 组合可变蚀刻堆叠,包括用于蚀刻坑密度检查的两种不同材料
    • US08906709B1
    • 2014-12-09
    • US14138797
    • 2013-12-23
    • Intermolecular, Inc.
    • Khaled AhmedFrank GreerGeorge MirthZhi-Wen Sun
    • H01L21/66
    • H01L22/12H01L21/6708H01L21/67253H01L22/20
    • Provided are methods of high productivity combinatorial (HPC) inspection of semiconductor substrates. A substrate includes two layers of dissimilar materials interfacing each other, such as a stack of a silicon bottom layer and an indium gallium arsenide top layer. The dissimilar materials have one or more of thermal, structural, and lattice mismatches. As a part of the inspection, the top layer is etched in a combinatorial manner. Specifically, the top layer is divided into multiple different site-isolated regions. One such region may be etched using different process conditions from another region. Specifically, etching temperature, etching duration and/or etchant composition may vary among the site-isolated regions. After combinatorial etching, each region is inspected to determine its etch-pit density (EPD) value. These values may be then analyzed to determine an overall EPD value for the substrate, which may involve discarding EPD values for over-etched and under-etched regions.
    • 提供了半导体衬底的高生产率组合(HPC)检验方法。 衬底包括彼此相互接合的两层不同材料,例如硅底层和砷化铟镓顶层的叠层。 不同材料具有热,结构和晶格失配中的一种或多种。 作为检查的一部分,顶层以组合方式蚀刻。 具体来说,顶层被分成多个不同的位置隔离区域。 可以使用与另一区域不同的工艺条件来蚀刻一个这样的区域。 具体地,蚀刻温度,蚀刻持续时间和/或蚀刻剂组成可以在位置隔离区域之间变化。 在组合蚀刻之后,检查每个区域以确定其蚀刻坑密度(EPD)值。 然后可以分析这些值以确定衬底的整体EPD值,这可能涉及丢弃过蚀刻和欠蚀刻区域的EPD值。