会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Resolution of hemispherical grained silicon peeling and row-disturb
problems for dynamic random access memory, stacked capacitor structures
    • 用于动态随机存取存储器,堆叠电容器结构的半球形硅剥离和行干扰问题的分辨率
    • US5877052A
    • 1999-03-02
    • US94463
    • 1998-06-11
    • Dahcheng LinJung-Ho ChangHsi-Chuan ChenKuo-Shu Tseng
    • Dahcheng LinJung-Ho ChangHsi-Chuan ChenKuo-Shu Tseng
    • H01L21/02H01L21/8242H01L21/8234H01L21/20
    • H01L27/10852H01L28/84
    • A method for creating stacked capacitor structures, with increased surface area, obtained using storage node electrode structures comprised of an HSG silicon layer, on a heavily doped amorphous silicon layer, both overlying polysilicon storage node shapes, has been developed. A dilute hydrofluoric acid pre-clean procedure is used prior to depositing a heavily doped amorphous silicon layer, on underlying polysilicon storage node shapes. An overlying second amorphous silicon layer is in situ deposited, in the same furnace used for the prior deposition of heavily doped amorphous silicon layer, followed by an in situ seeding/annealing procedure, converting the second amorphous silicon layer to an HSG silicon layer. This invention features the use of the acid pre-clean, to improve adhesion of the heavily doped amorphous silicon layer, to underlying polysilicon storage node shapes. In addition the width of the polysilicon storage node shapes is initially designed to be narrow, to accept subsequent amorphous silicon depositions, and thus to result in the desired spacing between storage node electrodes, after deposition of the amorphous silicon layers, on the sides of the polysilicon storage node shapes.
    • 已经开发了一种用于产生堆叠电容器结构的方法,该堆叠电容器结构具有增加的表面积,其使用由HSG硅层组成的存储节点电极结构,在重掺杂非晶硅层上,覆盖多晶硅存储节点形状。 在沉积重掺杂的非晶硅层之前,使用稀氢氟酸预清洁程序,在下面的多晶硅存储节点形状上。 在与先前沉积重掺杂的非晶硅层相同的炉中原位沉积上覆的第二非晶硅层,随后进行原位接种/退火程序,将第二非晶硅层转化为HSG硅层。 本发明的特征在于使用酸预清洁剂来改善重掺杂非晶硅层对下层多晶硅储存节点形状的粘附性。 此外,多晶硅存储节点形状的宽度最初被设计为窄,以接受随后的非晶硅沉积,并且因此在沉积非晶硅层之后在存储节点电极之间产生期望的间隔 多晶硅储存节点形状。
    • 3. 发明授权
    • Growth enhancement of hemispherical grain silicon on a doped polysilicon
storage node capacitor structure, for dynamic random access memory
applications
    • 生长增强的半球晶硅在掺杂多晶硅存储节点电容器结构上,用于动态随机存取存储器应用
    • US6046083A
    • 2000-04-04
    • US105185
    • 1998-06-26
    • Dahcheng LinJung-Ho ChangHsi-Chuan ChenKuo-Shu Tseng
    • Dahcheng LinJung-Ho ChangHsi-Chuan ChenKuo-Shu Tseng
    • H01L21/02H01L21/20H01L21/8242
    • H01L28/82H01L28/84H01L28/91
    • A process for creating a storage node electrode for a DRAM capacitor structure, featuring increased surface area accomplished using an HSG silicon layer as the top layer for the storage node electrode, has been developed. The process features the use of a composite buffer layer of undoped and lightly doped amorphous silicon layers, located overlying a heavily doped amorphous silicon layer, and then followed by the deposition of HSG silicon seeds. A first anneal cycle then allows formation of an undoped HSG silicon layer to be realized on the underlying heavily doped amorphous silicon layer, via consumption of the HSG seeds, and of the composite buffer layer of undoped and lightly doped amorphous silicon layers. A second anneal cycle then allows dopant from the underlying heavily doped amorphous silicon layer to reach the undoped HSG silicon layer, resulting in a doped HSG silicon layer. Patterning, or CMP, of the doped HSG silicon layer, and of the heavily doped amorphous silicon layer, results in the creation of a storage node electrode. The use of the composite buffer layer allows the growth of an undoped HSG silicon layer to be achieved, thus maximizing uniformity and HSG silicon roughness, while the anneal cycle, applied to the undoped HSG silicon layer, results in the attainment of the doped HSG silicon layer, offering reduced capacitance depletion compared to undoped HSG silicon counterparts.
    • 已经开发了用于创建用于DRAM电容器结构的存储节点电极的处理,其特征在于使用HSG硅层作为存储节点电极的顶层而实现的增加的表面积。 该方法的特征在于使用位于重掺杂非晶硅层上方的未掺杂和轻掺杂的非晶硅层的复合缓冲层,然后沉积HSG硅晶种。 第一退火循环然后允许通过消耗HSG晶种和未掺杂和轻掺杂的非晶硅层的复合缓冲层,在下面的重掺杂非晶硅层上形成未掺杂的HSG硅层。 然后第二退火循环允许来自下面的重掺杂非晶硅层的掺杂剂到达未掺杂的HSG硅层,产生掺杂的HSG硅层。 掺杂HSG硅层和重掺杂非晶硅层的图案化或CMP形成存储节点电极的产生。 使用复合缓冲层允许实现未掺杂的HSG硅层的生长,从而最大化均匀性和HSG硅粗糙度,而施加到未掺杂的HSG硅层的退火循环导致获得掺杂的HSG硅 与未掺杂的HSG硅对应物相比,提供了减少的电容耗尽。
    • 4. 发明授权
    • Method for reducing crack of polysilicon in a quartz tube and boat
    • 降低石英管和船中多晶硅裂纹的方法
    • US5746512A
    • 1998-05-05
    • US711650
    • 1996-09-10
    • Liang-Gi YaoKuo-Shu Tseng
    • Liang-Gi YaoKuo-Shu Tseng
    • C23C16/44C23C16/46G01N25/00
    • C23C16/463C23C16/4401C23C16/46
    • The present invention relates to a method that reduces the thermal gradient at polymorphic transformation of polysilicon. The cooling rate of conventional furnaces is too rapid in currently used processes. The thermal process includes high stress from polymorphic transformation, which causes the peeling of a polysilicon film and microcracking of the quartz tube and wafer boat. The present invention suggests steps following of reducing cracks of polysilicon in a quartz tube and boat. At first, determines the temperature of polymorphic transformation of said quartz tube and boat. Next, reduces the temperature gradient during heating or cooling of said quartz tube and boat during said temperature of polysilicon transformation. Furthermore, the heating or cooling rates of the furnace is limited to the range of 0.1.degree.-2.degree. C./min to reduce the temperature gradient inside the furnace tube. Therefore, the thermal stress that is caused by the phase transition of the quartz is reduced by the invention and the particles and microcrack issues are also reduced by the invention.
    • 本发明涉及降低多晶硅多晶转化温度梯度的方法。 常规炉的冷却速度在当前使用的工艺中过快。 热过程包括多晶型转变的高应力,这导致多晶硅膜的剥离和石英管和晶片舟的微裂纹。 本发明提出了在石英管和船中减少多晶硅裂纹的步骤。 首先,确定所述石英管和船的多晶型转化温度。 接下来,在所述多晶硅转化温度期间,降低所述石英管和舟皿的加热或冷却期间的温度梯度。 此外,炉的加热或冷却速度限制在0.1℃-2℃/ min的范围内,以降低炉管内的温度梯度。 因此,通过本发明减少了由石英的相变引起的热应力,并且本发明也减少了颗粒和微裂纹问题。