会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • NON-INVASIVE IN-SITU IMAGING OF INTERIOR OF NUCLEAR REACTORS
    • 核反应堆内部非侵入式现场成像
    • US20150279489A1
    • 2015-10-01
    • US14676636
    • 2015-04-01
    • Los Alamos National Security, LLC
    • Edward Casteel MilnerKonstantin N. BorozdinChristopher L. MorrisHaruo MiyaderaJohn Oliver Perry
    • G21C17/06G01N23/00
    • G21C17/06G01F23/288G01N23/04G01N23/203G01N2223/625G21C17/003G21C17/08
    • Techniques, systems, and devices are disclosed for non-invasive monitoring and imaging of nuclear fuel inside a nuclear reactor using muon detector arrays. In one aspect, these detector arrays are placed outside the reactor vessel or building for investigating the reactors without access to the cores, therefore the imaging process is non-invasive. In some implementation, these detector arrays measure both muon scattering and absorption to enable imaging and characterizing not only the very high-Z fuel materials, but also other materials in the reactor, thereby obtaining a more complete picture of reactor status. When applied to damaged reactors, the disclosed proposed techniques, systems, and devices, through the process of providing an image, can reveal the presence (or absence) of damage to fuel rod assemblies or puddles of molten fuel at the bottom of the containment vessel, thus providing crucial information to guide decisions about remedial actions.
    • 公开了用于使用μ子探测器阵列在核反应堆内对核燃料进行非侵入性监测和成像的技术,系统和装置。 在一个方面,将这些检测器阵列放置在反应器容器或建筑物的外部,用于调查反应器而不进入核心,因此成像过程是非侵入性的。 在一些实施方案中,这些检测器阵列测量了μon散射和吸收,以便能够成像和表征非常高的Z燃料材料,以及反应器中的其他材料,从而获得反应器状态的更完整的图像。 当应用于损坏的反应堆时,所公开的技术,系统和装置,通过提供图像的过程,可以揭示在安全壳底部的燃料棒组件或熔融燃料的水坑的存在(或不存在) ,从而提供重要的信息来指导有关补救行动的决定。
    • 6. 发明申请
    • Scintillation Detector
    • 闪烁检测器
    • US20150014547A1
    • 2015-01-15
    • US14375218
    • 2012-12-17
    • Endress + Hauser GmbH + Co. KG
    • Hartmut DammSimon Weidenbruch
    • G01T1/20G01N9/24G01F23/288
    • G01T1/2006G01F23/288G01N9/24G01T1/20G01T1/2002
    • A scintillation detector, especially one for a radiometric measuring device for measuring and/or monitoring a measured variable, especially a fill level of a fill substance located in a container, for covering a predeterminable measuring range as flexibly as possible in shape and length. To this end, the scintillation detector comprises two or more scintillators arranged in series relative to one another for converting thereon falling, radioactive radiation into light flashes, whose light propagates in the respective scintillator toward its ends. Arranged between the scintillators are optical coupling elements, which establish light transmitting connections between adjoining pairs of scintillators. Connected at an end of the series is a photoelectric transducer, which converts light occurring in the series into an electrical signal corresponding to a radiation intensity striking the scintillators. According to the invention, at least one of the coupling elements is a mechanically flexible element, which includes a bundle of light conducting fibers, via which transmission of the light between the two scintillators connected with one another via the fibers occurs.
    • 闪烁检测器,特别是用于测量和/或监测测量变量,特别是位于容器中的填充物质的填充水平的辐射测量装置的闪烁检测器,用于在形状和长度上尽可能灵活地覆盖可预定的测量范围。 为此,闪烁检测器包括两个或更多个相对于彼此串联布置的闪烁体,用于将其下降的放射性辐射转换成闪光,其光在相应的闪烁体中朝向其端部传播。 在闪烁体之间布置的是光耦合元件,其在相邻的闪烁体对之间建立光传输连接。 连接在该系列的一端是光电传感器,其将串联中发生的光转换成对应于闪烁体的辐射强度的电信号。 根据本发明,耦合元件中的至少一个是机械柔性元件,其包括一束导光纤维,通过该束导光纤维发生通过光纤彼此连接的两个闪烁体之间的光的透射。
    • 7. 发明申请
    • APPARATUS FOR DETERMINING AND/OR MONITORING DENSITY AND/OR FILL LEVEL OF A MEDIUM IN A CONTAINER
    • 用于确定和/或监测集装箱中的密度和/或填充水平的装置
    • US20140353507A1
    • 2014-12-04
    • US14283358
    • 2014-05-21
    • Endress + Hauser GmbH + Co. KG
    • Dirk GlaserSimon Weidenbruch
    • G01F23/288G01F23/292
    • G01F23/288G01F23/292
    • An apparatus for determining the fill level of a medium in a container, comprising: an emitting unit to be monitored in the container and emits radioactive radiation into the container; a first detector unit receives radioactive radiation and forwards measurement data relative to the fill level of the medium to a control/evaluation unit; a second detector unit which receives the radioactive radiation, respectively the secondary radiation, wherein two interfaces for transmission of measurement data to the control/evaluation unit are associated with the second detector unit. Via the first interface measurement data are transmitted. Via the second interface measurement data are transmitted. The control/evaluation unit based on measurement data transmitted by the first detector unit and the second detector unit corrects the fill level of the medium in the container in such a manner that the influence of gas or vapor in the gas, or vapor, space on the measured fill level is at least approximately compensated.
    • 一种用于确定容器中的介质的填充水平的装置,包括:待在容器中监测的发射单元,并将放射性辐射放射到容器中; 第一检测器单元接收放射性辐射,并将相对于介质的填充水平的测量数据转发到控制/评估单元; 第二检测器单元,其分别接收放射性辐射,次级辐射,其中用于将测量数据传输到控制/评估单元的两个接口与第二检测器单元相关联。 通过第一接口测量数据被传输。 通过第二接口传输测量数据。 基于由第一检测器单元和第二检测器单元传输的测量数据的控制/评估单元以这样的方式校正容器中的介质的填充水平,使得气体或蒸汽空间中的气体或蒸气的影响 测量的填充水平至少近似补偿。
    • 9. 发明授权
    • FMCW-type radar level gauge
    • FMCW型雷达液位计
    • US08497799B2
    • 2013-07-30
    • US13114412
    • 2011-05-24
    • Mikael Kleman
    • Mikael Kleman
    • G01S13/08
    • G01S13/347G01F23/0061G01F23/0069G01F23/284G01F23/288G01S13/342G01S13/343G01S13/88H01Q1/225
    • A level gauge using microwaves to determine a distance to a surface of a product in a tank, wherein a measurement signal comprises a first frequency sweep, and a second frequency sweep, and a mixer is arranged to mix the measurement signal with an echo signal to form a first IF signal based on the first frequency sweep, and a second IF signal based on the second frequency sweep. Processing circuitry is adapted to sample the first IF signal and the second IF signal, to form a combined sample vector including samples from each tank signal, and to determine the distance based on the combined sample vector.By combining the samples from two (or more) different sweeps, the number of samples and the bandwidth can both be increased, thus maintaining the range L. However, as the samples are obtained from two separate sweeps, the sweep time for each individual sweep does not need to be increased, and the average power consumption can be maintained.
    • 一种使用微波来确定到罐中产品表面的距离的液位计,其中测量信号包括第一频率扫描和第二频率扫描,并且混合器被布置成将测量信号与回波信号混合到 基于第一频率扫描形成第一IF信号,以及基于第二频率扫描的第二IF信号。 处理电路适于对第一IF信号和第二IF信号进行采样,以形成包括来自每个槽信号的采样的组合采样矢量,并且基于组合的采样矢量来确定距离。 通过组合来自两个(或多个)不同扫描的样本,可以增加样本数量和带宽,从而保持范围L.然而,由于从两个单独的扫描获得样本,每个扫描的扫描时间 不需要增加,可以维持平均功耗。
    • 10. 发明申请
    • Radiometric Measuring Device
    • 辐射测量装置
    • US20120043466A1
    • 2012-02-23
    • US13266328
    • 2010-04-08
    • Simon WeidenbruchHartmut DammRobert Schauble
    • Simon WeidenbruchHartmut DammRobert Schauble
    • G01T1/20
    • G01F23/288G01F23/2885
    • A radiometric measuring device for measuring a physical, measured variable, especially a fill level or a density, of a fill substance located in a container, and/or for monitoring an exceeding or subceeding of a predetermined limit value for the physical, measured variable, comprising: a radioactive radiator, which, during operation, sends radioactive radiation through the container; and a detector arranged on a side of the container lying opposite the radiator and serving to receive a radiation intensity penetrating through the container, dependent on the physical, measured variable, and to convert such into an electrical output signal. With this measuring device, in an extremely flexibly predeterminable region to be metrologically registered by the detector, a very exact measuring of the radiation intensity can be put into practice. For this, the detector includes a carrier, on which at least one scintillation fiber is wound, which converts radiometric radiation impinging thereon into light flashes, whose light propagates in the respective scintillation fiber toward its ends. The detector further includes at least one array of avalanche photodiodes operated in the Geiger mode, which convert light impinging thereon into an electrical signal, wherein at least one end of each scintillation fiber is connected to avalanche photodiodes of one of the arrays. The detector also has a measuring device electronics connected to the avalanche photodiodes for producing the electrical output signal, based on the electrical signals of the avalanche photodiodes.
    • 一种辐射测量装置,用于测量位于容器中的填充物质的物理,测量变量,特别是填充水平或密度,和/或用于监测超过或超过物理测量变量的预定极限值的辐射测量装置, 包括:放射性辐射器,其在操作期间通过所述容器发射放射性辐射; 以及检测器,其布置在与散热器相对的容器的一侧上,并且用于接收穿透容器的辐射强度,这取决于物理测量的变量,并将其转换成电输出信号。 利用该测量装置,在由检测器计量地记录的非常灵活的可预定区域中,可以非常精确地测量辐射强度。 为此,检测器包括载体,其上缠绕有至少一个闪烁纤维,其将照射在其上的辐射辐射转换为闪光,其光在其闪烁纤维中朝向其端部传播。 检测器还包括以盖革模式操作的至少一个雪崩光电二极管阵列,其将入射到其上的光转换为电信号,其中每个闪烁光纤的至少一端连接到阵列之一的雪崩光电二极管。 检测器还具有连接到雪崩光电二极管的测量装置电子装置,用于基于雪崩光电二极管的电信号产生电输出信号。