会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Nonaqueous electrolyte solution and lithium secondary battery using same
    • 非水电解液和锂二次电池使用相同
    • US09209479B2
    • 2015-12-08
    • US12083005
    • 2006-10-12
    • Akio HiwaraTakashi Hayashi
    • Akio HiwaraTakashi Hayashi
    • H01M6/14H01M10/052H01M6/16H01G9/022H01G11/62H01M10/0567H01M10/0569
    • H01M10/052H01G9/038H01G11/62H01M6/14H01M6/16H01M10/0567H01M10/0569H01M2300/0017H01M2300/0037Y02E60/122Y02E60/13
    • Disclosed is a nonaqueous electrolyte solution containing a sultone compound represented by the Formula 1 below (wherein R1 to R4 respectively represent a hydrogen, a fluorine, a hydrocarbon group with 1 to 12 carbon atoms that may contain fluorine atom(s), n represents an integer of 0 to 3, and when n is 2 or 3, the two or three R3 groups are independent from each other and the two or three R4 groups are independent from each other), and an ethylene carbonate having a hydrogen atom substituted by a fluorine atom. Also disclosed is a lithium secondary battery employing the nonaqueous electrolyte solution. This nonaqueous electrolyte solution does not cause an increase in the internal resistance of a nonaqueous electrochemical device and improves the lifespan characteristics of the device. The lithium secondary battery containing the nonaqueous electrolyte solution exhibits greatly improved cycle charge/discharge characteristics at high temperature, and has excellent charge/discharge load characteristics.
    • 公开了含有下式1所示的磺内酯化合物(其中,R1〜R4分别表示氢,氟,可含有氟原子的碳原子数1〜12的烃基)的非水电解液,n表示 0〜3的整数,当n为2或3时,两个或三个R 3基彼此独立,两个或三个R 4基彼此独立),具有氢原子的碳酸亚乙酯由 氟原子。 还公开了使用非水电解质溶液的锂二次电池。 这种非水电解质溶液不会引起非水电化学装置的内阻增加并且提高了装置的寿命特性。 含有非水电解质溶液的锂二次电池在高温下表现出显着改善的循环充放电特性,并且具有优异的充放电负荷特性。
    • 6. 发明授权
    • Ionic electron conductive polymer capacitor
    • 离子电子传导聚合物电容器
    • US09171674B2
    • 2015-10-27
    • US13260234
    • 2011-04-06
    • Vincenzo Casasanta
    • Vincenzo Casasanta
    • H01G9/00H01G9/022H01G11/54B82Y30/00
    • H01G11/56B82Y30/00H01G9/038H01G11/54H01G11/84H02J7/0052Y02E60/13
    • Technologies are generally described for an electron conductive polymer capacitor may incorporate a conductive polymer mixture embedded with carbon nanoparticles between electrodes to rapidly charge and store large amounts of charge compared to conventional electrolytic capacitors. Such a capacitor may be constructed with a laminate sheet including layers of inner and outer electrodes, an electrolyte mixture between the electrodes, a conductive polymer mixture, and a composite mixture of carbon nanoparticles embedded in the conductive polymer between the inner electrodes. The laminate sheet may be wound into a roll and the inner and outer electrodes are coupled electrically. When an electric field is applied, cations within the electrolyte mixture move towards the outer electrodes and anions towards the inner electrodes. Further, the inner conductive polymer layer is ionized causing electrons to move toward the inner electrodes to be deposited onto high surface area carbon nanoparticles where charge is stored.
    • 一般来说,电子传导聚合物电容器的技术可以在电极之间引入嵌入碳纳米颗粒的导电聚合物混合物,以便与传统的电解电容器相比快速充电和储存大量的电荷。 这种电容器可以由包括内电极和外电极层的层压片,电极之间的电解质混合物,导电聚合物混合物和嵌入在内电极之间的导电聚合物中的碳纳米颗粒的复合混合物构成。 层压片可以卷绕成卷,内外电极电连接。 当施加电场时,电解质混合物内的阳离子朝着外部电极移动并且朝向内部电极移动阴离子。 此外,内部导电聚合物层被离子化,导致电子向内部电极移动以沉积到存储电荷的高表面积碳纳米颗粒上。