会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 8. 发明授权
    • In situ method for recovering hydrocarbon from subterranean oil shale
deposits
    • 从地下油页岩沉积物回收烃的原位方法
    • US4703798A
    • 1987-11-03
    • US880254
    • 1986-06-30
    • Robert H. Friedman
    • Robert H. Friedman
    • E21B43/18E21B43/24E21B43/248E21B43/40E21C41/24E21C43/00
    • E21B43/40E21B43/18E21B43/2405E21B43/248
    • Hydrocarbons may be recovered from subterranean oil shale deposits by penetrating the deposit with a well, applying hydraulic and/or explosive fracturing to the portion of the formation adjacent the well to form a zone of rubberized and/or fractured oil shale material and then introducing it to the treated portion of the formation a hydrogen doner solvent, preferably tetralin, in a sufficient volume to essentially fill all of the void spaces in the formation within the rubberized and fractured portion of the formation, and then applying hydrogen to the well and maintaining the hydrogen at a pressure range of from 50 to 500 and preferably from 250 to 350 pounds per square inch for a period of time in the range of from 50 to 600 and preferably 250 to 350 days, which causes a disintegration of the oil shale minerals. After this first stage pretreatment, the hydrogen is removed and a free-oxygen containing gas such as air is introduced into the pretreated portion of the oil shale deposit which removes organic fragments from the polymeric kerogen component of the oil shale by oxidative scission. A suitable solvent for the organic fragments is also present with the free oxygen containing gas. Fluids are recovered from the formation, since fluids including solvent and the organic fractions, which are separated by sublimation with the solvent being recycled.
    • 碳氢化合物可以从地层油页岩沉积物中回收,通过用井渗透沉积物,向邻近井的地层部分施加水力和/或爆炸性压裂,形成橡胶化和/或断裂的油页岩材料区,然后将其引入 向地层的处理部分提供足够体积的氢供体溶剂,优选四氢化萘,以基本上填充地层的橡胶化和断裂部分内的地层中的所有空隙,然后将氢施加到井中并保持 压力范围为50至500,优选250至350磅/平方英寸的氢气,时间范围为50至600,优选为250至350天,这导致油页岩矿物的分解。 在该第一阶段预处理之后,除去氢气,并将含空气的自由氧气体引入油页岩沉积物的预处理部分中,其通过氧化断裂从油页岩的聚合物干酪根组分中除去有机碎片。 有机碎片的合适溶剂也含有游离含氧气体。 流体从地层中回收,因为包括溶剂和有机馏分在内的流体通过溶剂升华分离而被再循环。
    • 10. 发明授权
    • Stability control in underground workings adjacent an in situ oil shale
retort
    • 邻近原位油页岩蒸馏器的地下工作中的稳定性控制
    • US4531783A
    • 1985-07-30
    • US615699
    • 1984-05-29
    • Thomas E. Ricketts
    • Thomas E. Ricketts
    • E21B43/247E21C41/24E21C41/10
    • E21B43/247E21C41/24
    • In situ oil shale retorts are formed in spaced-apart rows, with adjacent rows of such retorts being separated by load-bearing inter-retort pillars of unfragmented formation sufficiently strong for preventing substantial subsidence. Each retort contains a fragmented permeable mass of formation particles containing oil shale. An air level drift is excavated in formation directly above the inter-retort pillar so that the roof and/or floor of the air level drift is spaced above the upper boundaries of the retorts in such adjacent rows. This causes the roof of the air level drift to be in compression, rather than in tension, which stabilizes the roof and avoids dangerous rock falls. During retorting operations, air is introduced at the upper edge of each retort through lateral air inlet passages sloping downwardly from the air level drift. Off gas and liquid products are withdrawn from each retort through a production level passage at the bottom of each retort at the edge opposite the air inlet. The production level passages connect to a main production level drift extending between adjacent rows of retorts. The roof of the main production level drift is excavated in formation directly below the inter-retort pillar so that the roof of the production level drift is spaced below the lower boundaries of the retorts in adjacent rows. This places the roof of the production level drift in compression, avoiding the likelihood of rock falls.
    • 原位油页岩蒸馏器形成为间隔开的排,这些蒸馏器的相邻排由承载的非破碎地层的蒸馏塔柱分离,足够坚固以防止实质的沉降。 每个蒸馏器包含含有油页岩的碎裂的渗透物质的地层颗粒。 在蒸馏塔的正上方挖掘空气位漂移,使得空气位漂移的屋顶和/或地板在相邻排中的蒸馏器的上边界之上间隔开。 这导致空气平台的顶部漂移被压缩而不是紧张,这稳定了屋顶,并避免了危险的岩石坠落。 在蒸煮操作期间,空气通过从空气水平漂移向下倾斜的侧向空气入口通道在每个蒸馏器的上边缘处引入。 废气和液体产品从每个蒸馏器中通过位于每个蒸馏器底部的生产级通道在与空气入口相对的边缘排出。 生产水平通道连接到在相邻的蒸馏排之间延伸的主生产水平漂移。 主要生产水平漂移的屋顶是直接在蒸馏塔下面形成的,使得生产水平漂移的屋顶间隔在相邻排中的蒸馏器的下边界之下。 这使得生产水平的屋顶在压缩中漂移,避免了岩石坠落的可能性。