会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • Plasma Centrifuge Heat Engine Beam Fusion Reactor
    • 等离子离心机热引擎光束反应堆
    • US20080226011A1
    • 2008-09-18
    • US11534171
    • 2006-09-21
    • Daniel C. Barnes
    • Daniel C. Barnes
    • G21B1/03
    • G21B1/05G21B1/052Y02E30/122Y02E30/126
    • A system and apparatus for a magnetized plasma nuclear fusion reactor, incorporating special design features which induce a plasma heat engine cycle in a rapidly rotating plasma. The heat engine operates either continuously or by oscillations. A continuous heat engine is formed in the open field outside a field reversed configuration. The oscillatory system operates in synchronism with cyclic acceleration, collision, and deceleration of plasma masses to produce nuclear fusion reactions at an economically useful rate with a relatively small driving power required. A special magnetic field design is combined with applied electrical voltages at the end of the field lines to produce required conditions. Design features allow recovery of large fraction of collision heat which would otherwise be dissipated as a parasitic loss.
    • 一种用于磁化等离子体核聚变反应堆的系统和装置,其包括在快速旋转的等离子体中引起等离子体热机循环的特殊设计特征。 热力发动机连续运行或通过振荡。 在场反转构造外的开放场中形成连续热机。 振荡系统与等离子体质量的循环加速,碰撞和减速同步运行,以经济上有用的速率产生具有相对小的驱动功率所需的核聚变反应。 特殊的磁场设计与现场线路末端的施加电压相结合,以产生所需的条件。 设计特征允许恢复大部分的碰撞热,否则这将会作为寄生损耗消散。
    • 7. 发明授权
    • Method of fabricating a spherical cavitation chamber
    • 制造球形空化室的方法
    • US07103956B2
    • 2006-09-12
    • US10925070
    • 2004-08-23
    • Ross Alan Tessien
    • Ross Alan Tessien
    • B21D39/02G21B1/03
    • H05H7/18Y10T29/49893Y10T29/49995Y10T29/49996Y10T29/49998
    • A method of fabricating a spherical cavitation chamber. Depending upon the chamber's composition and wall thickness, chambers fabricated with the disclosed techniques can be used with either low or high pressure systems. During chamber fabrication, initially two spherical half portions are fabricated and then the two half portions are joined together to form the desired cavitation chamber. During the fabrication of each chamber half, the interior spherical surface is completed first and then the outer spherical surface. Prior to joining the two spherical cavitation chamber halves, the surfaces to be mated are finished, preferably to a surface flatness of at least ±0.01 inches. Brazing is used to join the chamber halves together. The brazing material is preferably in the form of a ring-shaped sheet with outside and inside diameters of approximately the same size as the cavitation sphere's outside and inside diameters. Preferably the brazing operation is performed under vacuum conditions. During brazing, preferably force is applied to the two half spheres in order to compress the brazing material and achieve a strong bond. In order to insure that the inner surface of the completed cavitation chamber is relatively smooth, means for aligning the two half spheres during brazing is required, the means being either integral or external to the half spheres.
    • 制造球形空化室的方法。 根据室的组成和壁厚度,用所公开的技术制造的室可以与低压或高压系统一起使用。 在室制造期间,最初制造两个球形半部分,然后两个半部分连接在一起以形成所需的空化室。 在每个室的制造期间,内部球形表面首先被完成,然后是外部球形表面。 在接合两个球形气蚀室半部之前,要配合的表面被完成,优选地至少为±0.01英寸的表面平坦度。 钎焊被用于将半室连接在一起。 钎焊材料优选为环形片的形式,其外径和内径与空化球的外径和内径大致相同。 优选地,在真空条件下进行钎焊操作。 在钎焊期间,优选地将力施加到两个半球上以便压缩钎焊材料并实现强结合。 为了确保完成的气蚀室的内表面相对平滑,需要在钎焊期间对准两个半球的装置,该装置是半球的整体或外部。
    • 8. 发明授权
    • Ignition of deuterium-trtium fuel targets
    • 点燃氘燃料目标
    • US5043131A
    • 1991-08-27
    • US451607
    • 1989-12-18
    • Donald L. MusinskiMichael T. Mruzek
    • Donald L. MusinskiMichael T. Mruzek
    • G21B1/03H05H1/22
    • G21B1/19G21B1/03Y02E30/14Y02E30/16Y10S439/929
    • A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.
    • 一种点燃氘 - 氚ICF燃料目标以获得燃料燃烧的方法,其中燃料对象最初包括具有基本均匀厚度的DT材料冻结层的空心球壳和围绕壳体内表面的低温温度。 允许目标通过具有由连续目标点火加热的壁的靶室自由下落,使得目标在自由落体期间被均匀加热以至少部分地熔化冷冻燃料层并形成液体单相层或 在内壳表面周围具有基本均匀厚度的混合液/固相双相层。 然后从燃料室外部照射下落的目标,同时燃料层基本上均匀地单一或双相,以点燃燃料层并释放能量。
    • 10. 发明授权
    • Method for the initiation of fusion reactions for the controlled release
of energy
    • 启动用于控释能量的聚变反应的方法
    • US4328070A
    • 1982-05-04
    • US126332
    • 1980-03-03
    • Friedwardt M. Winterberg
    • Friedwardt M. Winterberg
    • G21B1/03H05H1/22G21B1/00
    • G21B1/19G21B1/03Y02E30/14Y02E30/16
    • The invention relates to a novel method for the controlled release of thermonuclear energy by inertial confinement. The essential feature of the invention is that is uses for the achievement of this goal high temperature black body radiation. The black body radiation is generated by hypervelocity impact onto a tenuous gas trapped inside a small cavity. The tenuous gas is shock-heated to high temperatures and thereby becomes a source of intense photon radiation, which after reaching thermodynamic equilibrium becomes a black body radiation. The thusly generated black body radiation is the furthermore amplified by adiabatic compression through the implosion of the cavity. During the implosion process the photons inside the cavity must be sufficiently well confined by the opacity of the cavity wall which sets a lower limit for the implosion velocity. The thusly created and amplified black body radiation is then used to ablatively implode and ignite a thermonuclear target placed inside the cavity. Because the attainable black body radiation temperatures typically reach values of .apprxeq. 1 keV, the corresponding short photon wave length should with much greater ease permit high density target compression than with other proposed drivers. The cavity implosion itself can be driven by any one of the available sources hitherto proposed for inertial confinement fusion, including laser beams, beams of charged particles and hypervelocity projectiles, but unlike in case of direct pellet fusion with a greatly reduced power and power density.
    • 本发明涉及通过惯性约束控制释放热核能的新方法。 本发明的基本特征是用于实现这个目标的高温黑体辐射。 黑体辐射是通过超高速冲击而产生的,这种微弱气体被捕获在一个小腔内。 脆弱的气体被冲击加热到高温,从而成为强光子辐射的来源,其在达到热力学平衡后成为黑体辐射。 由此产生的黑体辐射进一步通过空腔内壁的绝热压缩而放大。 在内爆过程中,空腔内的光子必须充分地受到空腔壁的不透明度的限制,空腔壁设定内爆速度的下限。 然后使用这样产生和放大的黑体辐射来消融和点燃放置在腔内的热核靶。 因为可获得的黑体辐射温度通常达到约1keV的值,相应的短光子波长应该比其他提出的驱动器更容易允许高密度目标压缩。 空腔内爆本身可以由迄今为止提出的用于惯性约束熔化的任何一种可用源驱动,包括激光束,带电粒子束和超高速射弹,但是不同于在大大降低的功率和功率密度的直接球团聚合的情况下。