会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 材料测试 / 无损检测 / 一种复合型光声无损动态血糖检测仪

一种复合型光声无损动态血糖检测仪

阅读:1121发布:2021-01-09

IPRDB可以提供一种复合型光声无损动态血糖检测仪专利检索,专利查询,专利分析的服务。并且本发明公开了一种复合型光声无损动态血糖检测仪,它包括激光器、激光准直单元、聚焦透镜组、冷却单元、手指固定腔、压电换能器阵列、激光调制器、DSP微处理器、显示模块、锁相放大器和前置放大器;冷却单元附着在手指固定腔上;激光器、激光准直单元、聚焦透镜组在同一个平面内。本发明基于啁啾调制信号和压电换能器阵列,具有获得血糖指纹特性的能力,而且结构简单,测量精度达到96.5%以上。同时有效控制被测部位温度变化,从而有效避免环境的影响。,下面是一种复合型光声无损动态血糖检测仪专利的具体信息内容。

1.一种复合型光声无损动态血糖检测仪,其特征在于:它包括激光器、激光准直单元、聚焦透镜组、冷却单元、手指固定腔、压电换能器阵列、激光调制器、DSP微处理器、显示模块、锁相放大器和前置放大器;冷却单元附着在手指固定腔上;激光器、激光准直单元、聚焦透镜组在同一个平面内;

激光器受到激光调制器的调制,将DSP微处理器产生的啁啾信号加载到激光光束上,同时将啁啾信号作为参考信号发送给锁相放大器;带有啁啾信号的激光光束通过激光准直单元后,入射到聚焦透镜组,使得激光光束聚焦到手指固定腔内,光能量被放置在手指固定腔内的皮肤组织吸收后,由于光声效应形成超声波,压电换能器阵列探测到超声波,将声信号转换成电信号,前置放大器将压电换能器阵列采集到的电信号放大,输入到锁相放大器进行检测,得到对应频率的光声信号强度。

2.根据权利要求1所述的一种复合型光声无损动态血糖检测仪,其特征在于:激光器受到激光调制器的调制,将频率范围为0.3M~11MHz的啁啾信号调制到激光器,生成周期性光强波动。

3.根据权利要求1所述的一种复合型光声无损动态血糖检测仪,其特征在于:压电换能器阵列由至少两个不同中心频率的声学聚焦换能器组成,其检测声波频率覆盖频率范围为0.3M~11MHz,同时声学聚焦换能器的焦距相同,它们的焦点与激光器入射光位置重合,正好落在入射激光的焦平面上。

4.根据权利要求1所述的一种复合型光声无损动态血糖检测仪,其特征在于:冷却单元由珀耳帖致冷元件和温度传感器组成,对手指固定腔进行温度调节,使得其工作温度为

15±0.2℃。

5.根据权利要求1所述的一种复合型光声无损动态血糖检测仪,其特征在于:手指固定腔主要由光学透镜、玻璃挡板和衬底组成,形成声学谐振腔。

6.根据权利要求1所述的一种复合型光声无损动态血糖检测仪,其特征在于:所述的激光器为中心波长为980nm的近红外半导体连续波激光器。

说明书全文

一种复合型光声无损动态血糖检测仪

技术领域

[0001] 本发明涉及一种用于医学检测糖尿病患者血糖水平的测量仪,具体涉及一种复合型光声无损动态血糖检测仪。

背景技术

[0002] 一种无创伤,连续可测,便携式的动态血糖检测仪已经成为当前血糖仪发展趋势。国际糖尿病联合会发布的《糖尿病地图》显示,2013年全球约有3.82亿成年人患有糖尿病,而我国已成为全球糖尿病患者最多的国家,总糖尿病患病人数将近一亿,糖尿病前期人数达1.5亿左右。而糖尿病患者为了控制其病情发展,需要不间断地进行测量其血糖水平,以达到使得血糖值保持在正常范围的目的。
[0003] 而目前临床上常用的血糖测试仪均为创伤性的,给患者带来一定的痛苦。同时,我们注意到众多企业正在研制无创伤性血糖测定方法和检测仪器,其中不乏国际巨头大企业,例如Microsoft,Google,Samsung在最近几年提出和开展无创伤血糖仪的研发,无创伤血糖仪一旦研发成功,对于现行“血糖仪免费、靠试纸赚钱”的模式将是革命性的进步。
[0004] 另一方面,我们注意到目前已经公开了多项关于无创血糖仪的发明专利,如《无创式近红外电子血糖仪》(CN102198004A)利用红外光源(600~2500nm)透射手指,根据血糖的吸收光谱,利用神经网络的混合专家算法对红外传感阵列中各传感器的信号进行加权平均后得到血糖值;《无创伤性血糖监测仪》(CN201295231Y)是通过与患者皮肤接触的两个电极测量患者的电容量从而得到患者的血糖值;《无创伤自测血糖仪》(CN1271562A)是利用红外光发射管作为红外光源(波长:1000~2900nm),采用透射式测量血糖值。
[0005] 申请号为200710304706.7的中国专利公开了一种无创血糖快速检测的方法和装置,它采用的是脉冲激光,测量是使用光声效应和光散射效应进行,采用脉冲激光成本较高,而且其也无法解决血糖检测受环境影响的问题。
[0006] 以上方法采用的红外光谱法,受干扰严重,对环境要求高。受到环境温度的影响大。无创血糖仪为何没迟迟不能研发成功,究其原因是两个方面:(1)稳定性和准确性是目前无创伤血糖仪的瓶颈(2)无创伤动态血糖检测仪检测受环境影响大。

发明内容

[0007] 本发明目的是提供一种用于医学检测糖尿病患者血糖水平的无创伤测量仪,解决无创伤血糖仪的受环境影响大,尤其是受到其他组织液的影响的问题。
[0008] 本发明的技术方案为:一种复合型光声无损动态血糖检测仪,它包括激光器、激光准直单元、聚焦透镜组、冷却单元、手指固定腔、压电换能器阵列、激光调制器、DSP微处理器、显示模块、锁相放大器和前置放大器;冷却单元附着在手指固定腔上;激光器、激光准直单元、聚焦透镜组在同一个平面内;
[0009] 激光器受到激光调制器的调制,将DSP微处理器产生的啁啾信号加载到激光光束上,同时将啁啾信号作为参考信号发送给锁相放大器;带有啁啾信号的激光光束通过激光准直单元后,入射到聚焦透镜组,使得激光光束聚焦到手指固定腔内,光能量被放置在手指固定腔内的皮肤组织吸收后,由于光声效应形成超声波,压电换能器阵列探测到超声波,将声信号转换成电信号,前置放大器将压电换能器阵列采集到的电信号放大,输入到锁相放大器进行检测,得到对应频率的光声信号强度。
[0010] 进一步地,激光器受到激光调制器的调制,将频率范围为0.3M~11MHz的啁啾信号调制到激光器,生成周期性光强波动。
[0011] 进一步地,压电换能器阵列由至少两个不同中心频率的声学聚焦换能器组成,其检测声波频率覆盖频率范围为0.3M~11MHz,同时声学聚焦换能器的焦距相同,它们的焦点与激光器入射光位置重合,正好落在入射激光的焦平面上。
[0012] 进一步地,冷却单元由珀耳帖致冷元件和温度传感器组成,对手指固定腔进行温度调节,使得其工作温度为15±0.2℃。
[0013] 进一步地,手指固定腔主要由光学透镜、玻璃挡板和衬底组成,形成声学谐振腔。
[0014] 进一步地,所述的激光器为中心波长为980nm的近红外半导体连续波激光器。
[0015] 本发明采用的是连续波激光器使用啁啾信号进行调制,相对于脉冲激光器,连续激光器除了价格便宜,我们的调制方式使得光声信号频谱丰富,即可以覆盖0.3M~11MHz的信号;而且研究发现测量部位温度每升高0.1℃引起的光强与葡萄糖浓度降低
3.68mmol/L相当(参考文献:刘蓉等.天津大学学报.Vol.41No.12008),这样温控是非常重要的,可提高精度,避免使用激光后引入人为误差。
[0016] 以现有技术相比,本发明的有益效果是:
[0017] (1)基于啁啾调制信号和压电换能器阵列,具有获得血糖指纹特性的能力,而且结构简单,测量精度达到96.5%以上。
[0018] (2)同时有效控制被测部位温度变化,从而有效避免环境的影响。

附图说明

[0019] 图1为本发明的结构示意图;
[0020] 图2为手指控制腔结构示意图;
[0021] 图3为本发明使用的啁啾信号图;
[0022] 图4为依据本发明系统得到的去离子水与血糖溶液(500mmol/L)光声谱图;
[0023] 图5为本发明采用激光波长为980nm时,Ⅰ型糖尿病人血糖密度与光声信号值测量随时间的关系图。
[0024] 图6为本发明采用激光波长为980nm时,Ⅱ型糖尿病人血糖密度与光声信号值测量随时间的关系图。
[0025] 图7为对于多次测量,血糖密度与光声信号值的线性耦合关系。
[0026] 图中,11为激光器,12为激光准直单元,13为聚焦透镜组,14为冷却单元,15为手指固定腔,16为压电换能器整阵列,17为激光调制器,18为DSP微处理器,19为显示模块,110为锁相放大器,111为前置放大器,21为手指腔,22为衬底,23为透镜固定架,24为增透镜,25为凸透镜,26为玻璃挡板。

具体实施方式

[0027] 下面结合附图对本发明作进一步描述,一种双波长差分近红外无创伤血糖仪:
[0028] 本发明主要特点是:第一,使用了啁啾信号作为调制信号,形成待检测的光声谱;第二,利用冷却单元控制被测部位的温度,避免环境温度或测量部位温度变化的影响;第三,使用采用声学聚焦换能器,明显提高声波的检测效率。
[0029] 其结构如图1所示,它包括激光器11、激光准直单元12、聚焦透镜组13、冷却单元14、手指固定腔15、压电换能器阵列16、激光调制器17、DSP微处理器18、显示模块19、锁相放大器110和前置放大器111;冷却单元14附着在手指固定腔15上;激光器11、激光准直单元12、聚焦透镜组13在同一个平面内。
[0030] 激光器11受到激光调制器17的调制,将DSP微处理器18产生的啁啾信号加载到激光光束上,同时将啁啾信号作为参考信号发送给锁相放大器110;带有啁啾信号的激光光束通过激光准直单元12后,入射到聚焦透镜组13,使得激光光束聚焦到手指固定腔内15,光能量被放置在手指固定腔15内的皮肤组织吸收后,由于光声效应形成超声波,压电换能器阵列探测到超声波,将声信号转换成电信号,前置放大器111将压电换能器阵列16采集到的电信号放大,输入到锁相放大器110进行检测,得到对应频率的光声信号强度,输入到DSP微处理器18处理后通过显示模块显示。
[0031] 激光器11受到激光调制器17的调制,将频率范围为0.3M~11MHz的啁啾信号调制到激光器,生成周期性光强波动。压电换能器阵列16由至少两个不同中心频率的声学聚焦换能器组成,其检测声波频率覆盖频率范围为0.3M~11MHz,同时声学聚焦换能器的焦距相同,它们的焦点与激光器11入射光位置重合,正好落在入射激光的焦平面上。冷却单元14由珀耳帖致冷元件和温度传感器组成,对手指固定腔15进行温度调节,使得其工作温度为15±0.2℃。手指固定腔由光学透镜、玻璃挡板26和衬底22组成,形成声学谐振腔。手指腔21是用于放置被测手指部位;增透镜24作用是对980nm的近红外光起到窄带滤光的作用,避免其他波长的红外光的影响;凸透镜25可以调整聚焦点,使得聚焦点正好落在玻璃挡板26后,距离玻璃挡板262mm~3mm,玻璃挡板26的作用是检测时手指贴在玻璃挡板26上,使得激光的聚焦点正好落在手指皮肤内部;衬底22的作用有两个,一个是固定手指腔体,另外一个作用是与玻璃挡板26形成声学谐振腔。所述的激光器11为中心波长为
980nm的近红外半导体连续波激光器。
[0032] 建立检测算法数学模型是选择光声谱技术的理论依据。产生的声信号在细胞组织中的传播方程可以用以下式子描述:
[0033]
[0034] 这里I表示激光光强,v是声波在细胞组织中传播速度,α是光吸收系数,β是热膨胀系数,Cp是比热容,p是声压强。
[0035] 对于弱吸收组织细胞的情况,声压强p可以写为:
[0036]
[0037] 这里k是系统加权常数,E0为入射光强能量,n是实验经验常数(介于1和2之间)。
[0038] 这样采用啁啾信号如图2所示,其包括频率0.01MHz~10MHz的信号,时间延迟为0.1s,采样时间10分钟,每隔30s可以计算一个血糖值,形成动态测量。
[0039] 图4中给出了去离子水与血糖溶液(500mmol/L)光声谱图,从吸收光谱可以看出在980nm附近存在光声吸收谱的峰值,选择980nm的近红外激光可以实现准确测量血糖值的目的。
[0040] 图5和图6分别表示采用激光波长为980nm时,Ⅰ型糖尿病人血糖密度与光声信号值测量随时间的关系图和Ⅱ型糖尿病人血糖密度与光声信号值测量随时间的关系图,从关系图中可以清晰看出对于Ⅰ型和Ⅱ型糖尿病人,光声信号值与血糖密度有非常好的线性关系。
[0041] 图7为对于多次测量,给出PA检测的血糖值VPA与医疗测量值VClinical之间的线性耦合关系为
[0042] VPA=0.965VClinical+12.65 (3)
[0043] 两者的相关性达到96.5%,即可准确地测量出血糖值,测量精度达到96.5%以上。
[0044] 以上所述实施例仅表达了本申请的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请技术方案构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用