会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 变压器和转换设备 / 传感器 / 传感器 / 湿度传感器 / CMOS湿度传感器及其形成方法

CMOS湿度传感器及其形成方法

阅读:1016发布:2020-07-28

IPRDB可以提供CMOS湿度传感器及其形成方法专利检索,专利查询,专利分析的服务。并且一种CMOS湿度传感器及其形成方法,其中CMOS湿度传感器的形成方法包括:利用MOS器件中的子金属互连层的形成工艺形成湿度传感器的下电极层、第一金属互连层、第一电连接层、第二电连接层以及上电极层;然后采用兼容标准CMOS工艺中的刻蚀工艺、各向同性刻蚀工艺,在传感器区形成环形凹槽以及隔热区域,在传感器区形成相互贯穿的通孔以及沟槽;然后形成填充满通孔和沟槽的湿敏材料层。本发明湿度传感器的形成工艺与MOS器件的形成工艺完全兼容,将湿度传感器和MOS器件集成在同一芯片上,缩小了芯片面积,降低了功耗,提高了集成度和产量。,下面是CMOS湿度传感器及其形成方法专利的具体信息内容。

1.一种CMOS湿度传感器的形成方法,其特征在于,包括: 提供包括M0S器件区以及传感器区的衬底,所述M0S器件区部分衬底上形成有多晶硅栅,所述传感器区部分衬底上形成有多晶硅加热层,所述衬底上形成有覆盖于多晶硅栅表面以及多晶硅加热层表面的第一介质层; 在M0S器件区上方的第一介质层表面形成与多晶硅栅电连接的第一子金属互连层,同时在所述传感器区上方的第一介质层表面形成若干相互电绝缘的第一金属互连层、第一电连接层以及下电极层,且所述第一金属互连层、第一电连接层、以及下电极层横跨M0S器件区与传感器区的交界,其中,至少2个相互电绝缘的第一金属互连层与多晶硅加热层电连接; 在所述第一子金属互连层表面、第一金属互连层表面、下电极层表面、以及第一介质层表面形成第二介质层; 在所述M0S器件区上方的第二介质层表面形成与多晶硅栅电连接的第二子金属互连层,同时在所述传感器区上方的第二介质层表面形成第二金属互连层以及第二电连接层,所述第二电连接层与第一电连接层电连接,且所述第二金属互连层与下电极层之间具有相对重合面; 在所述第二子金属互连层表面、第二金属互连层表面、第二电连接层表面、以及第二介质层表面形成第三介质层; 在所述M0S器件区上方的第三介质层表面形成与多晶硅栅电连接的第三子金属互连层,同时在所述传感器区上方的第三介质层表面形成与第二电连接层电连接的上电极层,且所述上电极层与下电极层之间具有相对重合面,所述上电极层与所述第二金属互连层之间具有相对重合面; 在所述第三子金属互连层表面、上电极层表面、以及第三介质层表面形成顶层介质层; 依次刻蚀顶层介质层、第三介质层、第二介质层、第一介质层以及部分厚度的衬底,在传感器区形成环形凹槽,所述环形凹槽环绕第一金属互连层、第一电连接层、下电极层、第二金属互连层、第二电连接层以及上电极层,同时依次刻蚀去除位于第二金属互连层上方的顶层介质层、第三介质层以及第二介质层,直至暴露出第二金属互连层表面,在所述第二金属互连层上方形成通孔; 采用各向同性刻蚀工艺,沿所述环形凹槽暴露出的位于传感器区的衬底侧壁表面进行刻蚀,刻蚀去除位于多晶硅加热层下方的部分厚度衬底,在所述传感器区上方形成悬空结构,且所述悬空结构与传感器区的衬底之间具有隔热区域; 刻蚀去除所述第二金属互连层,在所述通孔下方形成沟槽; 形成填充满所述沟槽和通孔的湿敏材料层。

2.根据权利要求1所述的CMOS湿度传感器的形成方法,其特征在于,在平行于衬底表面方向上,所述环形凹槽的尺寸为通孔尺寸的1/10至2/5 ;所述沟槽的尺寸为通孔的尺寸的2倍至5倍。

3.根据权利要求2所述的CMOS湿度传感器的形成方法,其特征在于,在平行于衬底表面方向上,所述环形凹槽的尺寸为3微米至5微米;所述通孔的尺寸为10微米至50微米。

4.根据权利要求1所述的CMOS湿度传感器的形成方法,其特征在于,在平行于衬底表面方向上,所述上电极层的剖面形状为方形或梳状形。

5.根据权利要求1所述的CMOS湿度传感器的形成方法,其特征在于,在刻蚀去除所述第二金属互连层之前,所述第二金属互连层侧壁被第三介质层覆盖;在刻蚀去除所述第二金属互连层之前,所述上电极层侧壁被顶层介质层覆盖。

6.根据权利要求1所述的CMOS湿度传感器的形成方法,其特征在于,在形成所述第二电连接层的同时,在所述传感器区上方的第二介质层表面形成伪金属互连层,所述伪金属互连层与第二电连接层之间相互电绝缘,所述伪金属互连层横跨M0S器件区和传感器区的交界,且所述伪金属互连层位于第一金属互连层、第一电连接层的正上方。

7.根据权利要求6所述的CMOS湿度传感器的形成方法,其特征在于,在所在形成所述环形凹槽以及通孔的过程中,当第二金属互连层表面被暴露出来时,所述伪金属互连层表面被暴露出来;在刻蚀去除所述第二金属互连层的同时,所述伪金属互连层被刻蚀去除

8.根据权利要求7所述的CMOS湿度传感器的形成方法,其特征在于,所述悬空结构具有支撑臂,适于起到支撑悬空结构的作用;所述支撑臂为叠层结构,至少包括:位于所述伪金属互连层正下方的第二介质层、第一电连接层、第一金属互连层、下电极层以及第一介质层。

9.根据权利要求6所述的CMOS湿度传感器的形成方法,其特征在于,还包括步骤: 在形成所述第一金属互连层之前,在所述传感器区上方的第一介质层内形成至少若干与多晶硅加热层电连接的第一导电插塞,且所述第一金属互连层与第一导电插塞电连接; 在形成所述第二金属互连层以及第二电连接层之前,在所述传感器区上方的第二介质层内形成若干与第一电连接层电连接的第二导电插塞,且所述第二导电插塞与位于第一电连接层正上方的第二电连接层电连接; 在形成所述上电极层之前,在所述传感器区上方的第三介质层内形成若干与第二电连接层电连接的第三导电插塞,且所述第三导电插塞与上电极层电连接。

10.根据权利要求1所述的CMOS湿度传感器的形成方法,其特征在于,所述湿敏材料层的材料为聚酰亚胺;采用旋转涂覆工艺以及退火处理形成所述湿敏材料层。

11.根据权利要求1所述的CMOS湿度传感器的形成方法,其特征在于,形成所述湿敏材料层的工艺步骤包括:形成填充满所述沟槽和通孔的湿敏材料层,且所述湿敏材料层还位于顶层介质层表面;刻蚀去除所述顶层介质层表面的湿敏材料层。

12.根据权利要求1所述的CMOS湿度传感器的形成方法,其特征在于,所述第二金属互连层的材料为铝;采用湿法腐蚀工艺刻蚀去除所述第二金属互连层,湿法腐蚀工艺采用的液体为氢氟酸溶液或四甲基氢氧化铵溶液。

13.根据权利要求1所述的CMOS湿度传感器的形成方法,其特征在于,采用XeF 2进行所述各向同性刻蚀工艺;所述各向同性刻蚀工艺的工艺参数为:循环进行向刻蚀腔室内通入XeF2和抽取乂亦2的动作,刻蚀腔室内XeF 2压强为lOOPa至180Pa,且向刻蚀腔室内通入父6匕后维持10秒至50秒,循环次数为5至15次。

14.根据权利要求1所述的CMOS湿度传感器的形成方法,其特征在于,所述传感器区为待形成湿度传感器的区域;所述M0S器件区为待形成M0S信号处理器件的区域。

说明书全文

CMOS湿度传感器及其形成方法

技术领域

[0001] 本发明涉及半导体制作领域技术,特别涉及一种CMOS湿度传感器及其形成方法。

背景技术

[0002]目前,在诸如工农业生产、环保、航天等领域都经常需要对环境湿度进行测量及控制,在常规的环境参数中,湿度是最难准确测量的参数之一。
[0003] 湿度传感器是基于其功能材料能发生与湿度相关的物理效应或化学反应制造而成的,其具有将湿度物理量转换成电信号的功能。湿度传感器根据其工作原理的不同可分为:伸缩式湿度传感器,利用脱脂毛发的线性尺寸随环境水汽含量的变化而变化;蒸发式湿度传感器,即干湿球湿度传感器,利用干球和湿球温度计在相对湿度变化时两者温度差变化而制得;露点式湿度传感器,利用冷却方法使气体中的水汽达到饱和而结露,根据露点温度来测量气体中的相对湿度;电子式湿度传感器,包括电阻式、电容式和电解式。电容式湿度传感器利用感湿材料吸水后介电常数发生变化而改变电容值,其具有灵敏度高、功耗低、温漂小等优势,因而受到了广泛关注。
[0004] 将微传感器与周围的信号处理电路集成在一起,制作加工在同一芯片上,以实现更多的功能和更高的性能,同时降低传感器的成本,已成为MEMS (Micro-Electro-Mechanical System)发展的一个新焦点和趋势。通过系统集成,湿度传感器和信号处理电路尽可能的靠近,从而很大程度上降低寄生参数和外部干扰;单片集成的湿度传感器还可以减少不同芯片之间互连的可靠性问题。
[0005]因此,利用 CMOS (Complementary Metal Oxide Semiconductor)技术将湿度传感器和信号处理电路进行片上集成,且形成湿度传感器的工艺不会对信号处理电路造成不良影响,是未来湿度传感器的研究热点和焦点。因此,亟需提供一种新的湿度传感器的形成方法,同时将湿度传感器和CMOS信号处理器件集成在同一芯片上,且形成湿度传感器的工艺不会对CMOS信号处理器件造成不良影响。

发明内容

[0006] 本发明解决的问题是提供一种CMOS湿度传感器及其形成方法,湿度传感器的形成工艺与M0S器件的形成工艺兼容性高,缩小芯片面积、提高集成度和产量,降低功耗和生产成本。
[0007] 为解决上述问题,本发明提供一种CMOS湿度传感器的形成方法,包括:提供包括M0S器件区以及传感器区的衬底,所述M0S器件区部分衬底上形成有多晶硅栅,所述传感器区部分衬底上形成有多晶硅加热层,所述衬底上形成有覆盖于多晶硅栅表面以及多晶硅加热层表面的第一介质层;在M0S器件区上方的第一介质层表面形成与多晶硅栅电连接的第一子金属互连层,同时在所述传感器区上方的第一介质层表面形成若干相互电绝缘的第一金属互连层、第一电连接层以及下电极层,且所述第一金属互连层、第一电连接层、以及下电极层横跨M0S器件区与传感器区的交界,其中,至少2个相互电绝缘的第一金属互连层与多晶硅加热层电连接;在所述第一子金属互连层表面、第一金属互连层表面、下电极层表面、以及第一介质层表面形成第二介质层;在所述MOS器件区上方的第二介质层表面形成与多晶硅栅电连接的第二子金属互连层,同时在所述传感器区上方的第二介质层表面形成第二金属互连层以及第二电连接层,所述第二电连接层与第一电连接层电连接,且所述第二金属互连层与下电极层之间具有相对重合面;在所述第二子金属互连层表面、第二金属互连层表面、第二电连接层表面、以及第二介质层表面形成第三介质层;在所述MOS器件区上方的第三介质层表面形成与多晶硅栅电连接的第三子金属互连层,同时在所述传感器区上方的第三介质层表面形成与第二电连接层电连接的上电极层,且所述上电极层与下电极层之间具有相对重合面,所述上电极层与所述第二金属互连层之间具有相对重合面;在所述第三子金属互连层表面、上电极层表面、以及第三介质层表面形成顶层介质层;依次刻蚀顶层介质层、第三介质层、第二介质层、第一介质层以及部分厚度的衬底,在传感器区形成环形凹槽,所述环形凹槽环绕第一金属互连层、第一电连接层、下电极层、第二金属互连层、第二电连接层以及上电极层,同时依次刻蚀去除位于第二金属互连层上方的顶层介质层、第三介质层以及第二介质层,直至暴露出第二金属互连层表面,在所述第二金属互连层上方形成通孔;采用各向同性刻蚀工艺,沿所述环形凹槽暴露出的位于传感器区的衬底侧壁表面进行刻蚀,刻蚀去除位于多晶硅加热层下方的部分厚度衬底,在所述传感器区上方形成悬空结构,且所述悬空结构与传感器区的衬底之间具有隔热区域;刻蚀去除所述第二金属互连层,在所述通孔下方形成沟槽;形成填充满所述沟槽和通孔的湿敏材料层。
[0008] 可选的,在平行于衬底表面方向上,所述环形凹槽的尺寸为通孔尺寸的1/10至2/5 ;所述沟槽的尺寸为通孔的尺寸的2倍至5倍。
[0009] 可选的,在平行于衬底表面方向上,所述环形凹槽的尺寸为3微米至5微米;所述通孔的尺寸为10微米至50微米。
[0010] 可选的,在平行于衬底表面方向上,所述上电极层的剖面形状为方形或梳状形。
[0011] 可选的,在刻蚀去除所述第二金属互连层之前,所述第二金属互连层侧壁被第三介质层覆盖;在刻蚀去除所述第二金属互连层之前,所述上电极层侧壁被顶层介质层覆盖。
[0012] 可选的,在形成所述第二电连接层的同时,在所述传感器区上方的第二介质层表面形成伪金属互连层,所述伪金属互连层与第二电连接层之间相互电绝缘,所述伪金属互连层横跨M0S器件区和传感器区的交界,且所述伪金属互连层位于第一金属互连层、第一电连接层的正上方。
[0013] 可选的,在所在形成所述环形凹槽以及通孔的过程中,当第二金属互连层表面被暴露出来时,所述伪金属互连层表面被暴露出来;在刻蚀去除所述第二金属互连层的同时,所述伪金属互连层被刻蚀去除。
[0014] 可选的,所述悬空结构具有支撑臂,适于起到支撑悬空结构的作用;所述支撑臂为叠层结构,至少包括:位于所述伪金属互连层正下方的第二介质层、第一电连接层、第一金属互连层、下电极层以及第一介质层。
[0015] 可选的,还包括步骤:在形成所述第一金属互连层之前,在所述传感器区上方的第一介质层内形成至少若干与多晶硅加热层电连接的第一导电插塞,且所述第一金属互连层与第一导电插塞电连接;在形成所述第二金属互连层以及第二电连接层之前,在所述传感器区上方的第二介质层内形成若干与第一电连接层电连接的第二导电插塞,且所述第二导电插塞与位于第一电连接层正上方的第二电连接层电连接;在形成所述上电极层之前,在所述传感器区上方的第三介质层内形成若干与第二电连接层电连接的第三导电插塞,且所述第三导电插塞与上电极层电连接。
[0016] 可选的,所述湿敏材料层的材料为聚酰亚胺;采用旋转涂覆工艺以及退火处理形成所述湿敏材料层。
[0017] 可选的,形成所述湿敏材料层的工艺步骤包括:形成填充满所述沟槽和通孔的湿敏材料层,且所述湿敏材料层还位于顶层介质层表面;刻蚀去除所述顶层介质层表面的湿敏材料层。
[0018] 可选的,所述第二金属互连层的材料为铝;采用湿法腐蚀工艺刻蚀去除所述第二金属互连层,湿法腐蚀工艺采用的液体为氢氟酸溶液或四甲基氢氧化铵溶液。
[0019] 可选的,采用XeF2进行所述各向同性刻蚀工艺;所述各向同性刻蚀工艺的工艺参数为:循环进行向刻蚀腔室内通入XeF2和抽取XeF2的动作,刻蚀腔室内XeF 2压强为lOOPa至180Pa,且向刻蚀腔室内通入乂6?2后维持10秒至50秒,循环次数为5至15次。
[0020] 可选的,所述传感器区为待形成湿度传感器的区域;所述M0S器件区为待形成M0S信号处理器件的区域。
[0021] 可选的,所述多晶硅栅与衬底之间还形成有第一氧化层;所述多晶硅加热层与衬底之间还形成有第二氧化层,其中,第二氧化层和第一氧化层在同一道工艺中形成。
[0022] 本发明还提供一种CMOS湿度传感器,包括:衬底,所述衬底包括M0S器件区以及传感器区,所述M0S器件区部分衬底上形成有多晶硅栅,所述传感器区部分衬底上形成有多晶硅加热层,所述衬底上形成有覆盖于多晶硅栅表面以及多晶硅加热层表面的第一介质层;位于所述M0S器件区上方的第一介质层表面的第一子金属互连层,所述第一子金属互连层与多晶硅栅电连接;位于所述传感器区上方的第一介质层表面的若干相互电绝缘的第一金属互连层、第一电连接层以及下电极层,且所述第一金属互连层、第一电连接层、以及下电极层横跨M0S器件区与传感器区的交界,其中,至少2个相互电绝缘的第一金属互连层与多晶硅加热层电连接;位于所述第一子金属互连层表面、第一金属互连层表面、下电极层表面、以及第一介质层表面的第二介质层;位于所述M0S器件区上方的第二介质层表面的第二子金属互连层,所述第二子金属互连层与多晶硅栅电连接;位于所述传感器区上方的第二介质层表面的第二电连接层,所述第二电连接层与第一电连接层电连接;位于所述第二子金属互连层表面、第二电连接层表面、以及第二介质层表面的第三介质层;位于所述M0S器件区上方的第三介质层表面的第三子金属互连层,且所述第三子金属互连层与多晶硅栅电连接;位于所述传感器区上方的第三介质层表面的与第二电连接层电连接的上电极层,且所述上电极层与下电极层之间具有相对重合面;位于所述第三子金属互连层表面、上电极层表面、以及第三介质层表面的顶层介质层;位于所述传感器区的顶层介质层、第三介质层、第二介质层、第一介质层以及部分衬底内环形凹槽,所述环形凹槽环绕第一金属互连层、第一电连接层、下电极层、第二电连接层以及上电极层;位于所述传感器区的隔热区域,所述隔热区域与环形凹槽相互贯穿,且所述隔热区域位于衬底与多晶硅加热层之间;位于所述传感器区的顶层介质层、以及部分厚度的第三介质层内的通孔,以及位于剩余厚度的第三介质层内的沟槽,所述沟槽与通孔相互贯穿,且所述沟槽与下电极层之间具有相对重合面,所述沟槽与上电极层之间具有相对重合面;填充满所述沟槽和通孔的湿敏材料层。
[0023] 可选的,还包括:位于所述传感器区上方第一介质层内的第一导电插塞,所述第一导电插塞与多晶硅加热层以及第一金属互连层电连接;位于所述传感器区上方第二介质层内的第二导电插塞,所述第二导电插塞与第一电连接层以及第二电连接层电连接;位于所述传感器区上方第三介质层内的第三导电插塞,所述第三导电插塞与第二电连接层以及上电极层电连接。
[0024] 可选的,所述悬空结构具有支撑臂,适于起到支撑悬空结构的作用;所述支撑臂为叠层结构,至少包括:第二介质层、第一电连接层、第一金属互连层、下电极层、以及第一介质层。
[0025] 与现有技术相比,本发明的技术方案具有以下优点:
[0026] 本发明提供的CMOS湿度传感器的形成方法的技术方案中,在形成M0S器件的多晶硅栅的同时形成湿度传感器的多晶硅加热层,然后在形成M0S器件的子金属互连层的同时,形成湿度传感器所需的金属互连层、第一电连接层、第二电连接层、下电极层以及上电极层;接着,采用标准CMOS工艺中的刻蚀工艺进行刻蚀形成环形凹槽,同时在第二金属互连层上方形成通孔;接着采用各向同性刻蚀工艺刻蚀环形凹槽暴露出的衬底,在传感器区形成悬空结构;然后刻蚀去除第二金属互连层形成沟槽,形成填充满沟槽和通孔的湿敏材料层。本发明中湿度传感器的形成工艺与M0S器件的形成工艺完全兼容,将M0S器件与湿度传感器集成在同一芯片上,缩小了芯片面积,提高了集成度和产量,降低功耗以及生产成本。进一步,本发明在平行于衬底表面方向上,环形凹槽的尺寸为通孔尺寸的1/10至2/5,使得在形成湿敏材料层过程中,湿敏材料层仅填充满通孔,而进入环形凹槽内的湿敏材料层的量非常的少,从而有利于提高CMOS湿度传感器的散热性能。
[0027] 进一步,本发明在平行于衬底表面方向上,沟槽的尺寸为通孔的尺寸的2倍至5倍,使得在形成湿敏材料层的过程中,湿敏材料层较好的填充满沟槽以及通孔,提高形成的湿敏材料层的感湿性能,从而提高湿度传感器的感湿灵敏度。
[0028] 进一步,本发明在形成第二电连接层的同时,在传感器区上方的第二介质层表面形成伪金属互连层,所述伪金属互连层横跨M0S器件区和传感器区的交界,且所述伪金属互连层位于第一金属互连层、第一电连接层的正上方。在形成环形凹槽的过程中,刻蚀工艺对伪金属互连层的刻蚀速率很小,因此在所述伪金属互连层起到保护下方第二介质层、第一金属互连层以及第一电连接层的作用,以利于形成悬空结构的支撑臂。
[0029] 同时,由于伪金属互连层的保护作用,避免了第一金属互连层以及第一电连接层暴露在环形凹槽的刻蚀工艺环境中,相应避免了第一金属互连层以及第一电连接层暴露在外界环境中,从而使得第一金属互连层以及第一电连接层保持良好的电学性能,提高多晶硅层以及上电极层中的电信号准确性。
[0030] 本发明还提供了一种结构性能优越的CMOS湿度传感器,MOS器件与湿度传感器集成在同一芯片上,芯片面积小,且CMOS湿度传感器的功耗低。

附图说明

[0031] 图1至图25为本发明实施例提供的CMOS湿度传感器形成过程的结构示意图。具体实施方式
[0032] 由背景技术可知,现有技术湿度传感器的制作工艺与CMOS工艺兼容性差,难以采用标准的CMOS工艺制作湿度传感器。
[0033] 为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
[0034] 图1至图25为本发明实施例提供的CMOS湿度传感器形成过程的结构示意图。
[0035] 参考图1,提供衬底100,所述衬底100包括M0S器件区I和传感器区II。
[0036] 所述衬底100的材料为硅、锗、锗化硅、碳化硅或砷化镓,所述衬底100还可以为绝缘体上的硅、绝缘体上的锗或者绝缘体上的锗化硅。所述衬底100表面还可以形成若干外延界面层或应变层,以提高CMOS湿度传感器的电学性能。
[0037] 本实施例中,所述衬底100为硅衬底。所述M0S器件区I为待形成M0S信号处理器件的区域,为后续形成PM0S晶体管、NM0S晶体管或CMOS晶体管提供信号处理电路平台,用于检测或采集湿度传感器中的电信号;所述传感器区II为待形成湿度传感器的区域,为后续形成湿度传感器提供工作平台。所述M0S器件区I衬底100内还可以形成隔离结构,所述隔离结构可以为浅沟槽隔离结构(STI,Shallow Trench Isolat1n),隔离结构的填充材料为氧化硅、氮化硅或氮氧化硅等绝缘材料。
[0038] 还可以在M0S器件区I衬底100内形成若干阱区,所述阱区的类型根据待形成的M0S器件的类型确定,所述阱区的掺杂类型为N型掺杂或P型掺杂。例如,在部分M0S器件区I上形成NM0S晶体管时,则相应的M0S器件区I衬底100内形成P型阱区,所述P型阱区的掺杂离子为B、Ga或In ;在部分M0S器件区I上形成PM0S晶体管时,则相应的M0S器件区I衬底100内形成N型阱区,所述N型阱区的掺杂离子为P、As或Sb。
[0039] 本实施例以一个M0S器件区1、一个传感器区11作为示例,相应后续形成湿度传感器的数量为1,在平行于衬底100表面方向上,所述传感器区II的尺寸为10微米X 10微米至50微米X50微米。在其他实施例中,M0S器件区的数量可以为大于等于1的任一自然数,传感器区的数量也可以为大于等于1的任一自然数,则相应形成的湿度传感器的数量与传感器区的数量相同。
[0040] 本实施例中,后续以在M0S器件区I内形成PM0S晶体管作为示例。
[0041] 参考图2,在所述M0S器件区I和传感器区II表面形成氧化层;在所述氧化层表面形成多晶硅层;图形化所述M0S器件区I的多晶硅层以及氧化层,形成位于M0S器件区I部分衬底100表面的第一氧化层111、以及位于第一氧化层111表面的多晶硅栅112 ;图形化所述传感器区II的多晶硅层以及氧化层,形成位于传感器区II部分衬底100表面的第二氧化层121、以及位于第二氧化层121表面的多晶硅加热层122。
[0042] 所述氧化层的材料为氧化硅,采用化学气相沉积工艺形成所述氧化层;所述多晶硅层的材料为多晶硅或掺杂的多晶硅,采用化学气相沉积工艺形成所述多晶硅层。
[0043] 本实施例中,在同一道工艺中,进行所述图形化M0S器件区I和传感器区II的多晶娃层和氧化层。
[0044] 本实施例中,在所述M0S器件区I部分衬底100上形成多晶硅栅112,且所述多晶硅栅112与衬底100之间形成有第一氧化层111 ;在形成所述多晶硅栅112的同时,在所述传感器区II部分衬底100上形成多晶硅加热层122,且所述多晶硅加热层122与衬底100之间形成有第二氧化层121。
[0045] 所述第一氧化层111和多晶硅栅112构成M0S器件的栅极结构。所述多晶硅加热层122作为湿度传感器的加热电阻,后续电流流经多晶硅加热层122时多晶硅加热层122内产生焦耳热量,从而对后续形成的湿敏材料层进行加热,提高湿敏材料层感应湿度的灵敏度、缩短湿度传感器的响应时间。
[0046] 在平行于衬底100表面的方向上,所述多晶硅加热层122的剖面形状为方形、方波形、锯齿波形、环形或螺旋形,其中,螺旋形可以为方形螺旋。本实施例中,所述多晶硅加热层122的形状为锯齿波形,多晶硅加热层122的厚度为2纳米至300纳米。
[0047] 在形成M0S器件的栅极结构之后,还包括步骤:对栅极结构两侧的衬底100进行掺杂,相应形成M0S器件的源区和漏区。
[0048] 参考图3,在所述M0S器件区I和传感器区II衬底100表面形成第一介质层103,所述第一介质层103还覆盖于多晶硅栅112表面以及多晶硅加热层122表面。
[0049] 所述第一介质层103不仅覆盖于多晶硅栅112侧壁表面、多晶硅加热层122侧壁表面,还覆盖于多晶硅栅112顶部表面、多晶硅加热层122顶部表面。所述第一介质层103的材料为绝缘材料,可以为氧化硅、氮化硅或氮氧化硅。
[0050] 本实施例中,采用化学气相沉积工艺形成所述第一介质层103,第一介质层103的材料为氧化硅。
[0051] 继续参考图3,在所述传感器区II上方的第一介质层103内形成若干第一导电插塞301,所述第一导电插塞301与多晶硅加热层122电连接。
[0052] 本实施例中,同时在M0S器件区I上方的第一介质层103内形成第一导电插塞301,M0S器件区I上方的第一导电插塞301与M0S信号处理器件中的晶体管电连接,例如与晶体管的源极、漏极或多晶硅栅112电连接,M0S器件区I上方的第一导电插塞301还与M0S器件区I后续形成的第一金属互连层电连接。
[0053] 传感器区II上方的至少2个第一导电插塞301与多晶硅加热层122电连接,通过第一导电插塞301向多晶硅加热层122提供电流,以使多晶硅加热层122内产生焦耳热量,传感器区II上方的第一导电插塞301还与传感器区II后续形成的第一金属互连层电连接。
[0054] 在一个具体实施例中,形成所述第一导电插塞301的工艺步骤包括:在所述第一介质层103表面形成图形层;以所述图形层为掩膜刻蚀所述第一介质层103,在所述第一介质层103内形成若干第一导电通孔,位于M0S器件区的第一导电通孔暴露出晶体管的源极、漏极和多晶硅栅112表面,位于传感器区II的第一导电通孔底部暴露出多晶硅加热层122表面;形成填充满所述第一导电通孔的第一导电插塞301,且所述第一导电插塞301顶部与第一介质层103顶部齐平。
[0055] 所述第一导电插塞301的材料为金属,例如第一导电插塞301的材料可以为铜、招或钨。
[0056] 参考图4至图6,图4为俯视图,图5为图4沿切割线AA1的剖面结构示意图,图6为图4沿切割线BB1的剖面结构示意图,在所述传感器区II上方的第一介质层103表面形成若干相互电绝缘的第一金属互连层401、第一电连接层421以及下电极层411,其中,至少2个相互电绝缘的第一金属互连层401与多晶硅加热层122电连接。
[0057] 所述下电极层411、第一电连接层421与第一金属互连层401的材料相同,且利用同一道工艺形成。所述第一金属互连层401的材料为金属,例如第一金属互连层401的材料为铜、铝或钨;所述下电极层411的材料为金属,例如下电极层411的材料为铜、铝或钨。
[0058] 且本实施例中,在传感器区II上方形成第一金属互连层401的同时,在M0S器件区I上方也形成与多晶硅栅112电连接的第一子金属互连层431。位于M0S器件区I上方的第一子金属互连层431与多晶硅栅112电连接,具体的通过第一导电插塞301使第一子金属互连层431与多晶硅栅112电连接。
[0059] 所述下电极层411为后续形成的电容器的下电极板,且所述下电极层411还位于M0S器件区I部分第一介质层103表面,即所述下电极层411横跨M0S器件区I与传感器区II交界,从而使下电极层411作为后续形成的支撑臂的一部分,且使所述下电极层411接入至M0S信号处理电路中。
[0060] 位于传感器区II上方的第一金属互连层401通过第一导电插塞301与多晶硅加热层122电连接,且与所述多晶硅加热层122电连接的第一金属互连层401相互电绝缘,使得后续电流经由一第一金属互连层401流入多晶硅加热层122中,然后经由另一第一金属互连层401流出,以使电流从多晶硅加热层122中流过,进而使多晶硅加热层122中产生焦耳热量。所述第一电连接层421与后续形成的上电极层电连接,通过第一电连接层421使上电极层接入至M0S信号处理电路中,且上电极层与下电极层411相互电绝缘。
[0061] 本实施例中,第一金属互连层401还位于M0S器件区I的部分第一介质层103表面,即第一金属互连层401横跨M0S器件区I与传感器区II交界,从而使得所述第一金属互连层401作为后续形成的支撑臂的一部分,还能够通过第一金属互连层401,使多晶硅加热层122接入至M0S信号处理电路中。
[0062] 同样的,第一电连接层421也横跨M0S器件区I与传感器区II的交界,从而使得所述第一电连接层421作为后续形成的支撑臂的一部分,还能够通过第一电连接层421使上电极板接入至M0S信号处理电路中。
[0063] 通过沉积、刻蚀工艺制作所述第一金属互连层401、第一电连接层421、第一子金属互连层431以及下电极层411。
[0064] 参考图7至图9,图7为俯视图,图8为图7沿切割线AA1的剖面结构示意图,图9为图7沿切割线BB1的剖面结构示意图,形成覆盖于所述第一介质层103表面、第一子金属互连层431、第一金属互连层401表面、第一电连接层421表面、以及下电极层411表面的第二介质层104 ;在传感器区II上方的第二介质层104内形成若干第二导电插塞302,且所述第二导电插塞302与第一电连接层421电连接;同时在器件区I上方的第二介质层104内形成第二导电插塞302,所述第二导电插塞302与多晶硅栅122电连接。
[0065] 所述第二介质层104的材料为绝缘材料,可采用化学气相沉积、物理气相沉积或原子层沉积工艺形成所述第二介质层104。所述第二介质层104顶部表面高于第一金属互连层401顶部表面。
[0066] 位于传感器区II上方的第二导电插塞302与下电极层411、多晶硅加热层122相互电绝缘,且位于传感器区II上方的第二导电插塞302与第一电连接层421电连接,后续通过所述第一电连接层421使得后续形成的上电极层接入至M0S信号处理电路。
[0067] 所述第二导电插塞302的形成方法可参考前述第一导电插塞301的形成方法。
[0068] 参考图10至图12,图10为俯视图,图11为图10沿切割线AA1的剖面结构示意图,图12为图10沿切割线BB1的剖面结构示意图,在所述传感器区II上方的第二介质层104表面形成第二金属互连层402以及第二电连接层422,所述第二电连接层422与第一电连接层421电连接,且所述第二金属互连层402与下电极层411之间具有相对重合面。
[0069] 具有相对重合面指的是:第二金属互连层402投影于衬底100表面的图形、与下电极层411投影于衬底100表面的图形具有相互重合的部分。
[0070] 本实施例中,位于传感器区II的第二导电插塞302与第二电连接层422电连接,通过所述第二导电插塞302实现第一电连接层421与第二电连接层422的电连接。
[0071] 本实施例中,同时在M0S器件区I的第二介质层104表面形成第二子金属互连层432,且M0S器件区I上方的第二子金属互连层432与多晶硅栅112电连接。
[0072] 本实施例在形成所述第二金属互连层402以及第二电连接层422的同时,还在传感器区II上方的第二介质层104表面形成伪金属互连层412,所述伪金属互连层412与第二电连接层422相互电绝缘,且所述伪金属互连层412横跨M0S器件区I和传感器区II的交界。
[0073] 且所述伪金属互连层412位于第一金属互连层401、第一电连接层421的正上方。在后续刻蚀形成环形凹槽的工艺过程中,会刻蚀暴露出伪金属互连层412表面,且所述刻蚀工艺对伪金属互连层412的刻蚀速率非常小,因此在刻蚀形成环形凹槽的过程中,所述伪金属互连层412起到保护第一金属互连层401以及第一电连接层421的作用,防止第一金属互连层401以及第一电连接层421暴露在外界环境中,从而避免多晶硅加热层122以及后续形成的上电极层中的电信号受到外界干扰。并且,由于后续会刻蚀去除第二金属互连层401,本实施例中位于伪金属互连层401正下方的第二介质层104起到保护第一金属互连层401以及第一电连接层421的作用,防止第一金属互连层401以及第一电连接层421被刻蚀去除。
[0074] 本实施例中位于第一电连接层421正上方的第二电连接层422与第一电连接层421电连接,而位于第一金属互连层401正上方的第二电连接层422与第一电连接层421电绝缘。
[0075] 所述第二金属互连层402与第二电连接层422的材料相同。本实施例中,所述第二金属互连层402的材料为铝。
[0076] 后续会刻蚀去除第二金属互连层402,然后填充湿敏材料层,因此所述第二金属互连层402的位置为后续形成的部分湿敏材料层的位置,为此所述第二金属互连层402与下电极层411之间具有相对重合面,当环境中水汽含量发生变化时,下电极层411与后续形成的上电极层之间的介质层的相对介电系数发生改变,从而使得下电极层411与上电极层之间的电容值发生改变,以获取环境中的湿度。
[0077] 参考图13至图15,图13为俯视图,图14为图13沿切割线AA1的剖面结构示意图,图15为图13沿切割线BB1的剖面结构示意图,在所述第二子金属互连层432、第二金属互连层402、第二电连接层422、伪金属互连层412、以及第二介质层104表面形成第三介质层105 ;在所述传感器区II上方的第三介质层105表面形成与第二电连接层422电连接的上电极层423,且所述上电极层423与下电极层411之间具有相对重合面,所述上电极层423与所述第二金属互连层402之间具有相对重合面。
[0078] 本实施例中,在形成上电极层423的同时,在所述M0S器件区I上方的第三介质层104表面形成与多晶硅栅112电连接的第三子金属互连层433。
[0079] 在形成所述上电极层423之前,在所述传感器区II上方的第三介质层104内形成若干与第二电连接层422电连接的第三导电插塞303,且所述第三导电插塞303与上电极层423电连接;同时在M0S器件区I上方的第三介质层105内形成与第二子金属互连层432电连接的第三导电插塞303,所述第三子金属互连层433与第二子金属互连层432电连接。
[0080] 所述上电极层423作为电容器的上电极板,通过第三导电插塞303、与所述第三导电插塞303电连接的第二电连接层422、与所述第二电连接层422电连接的第二导电插塞302、与所述第二导电插塞302电连接的第一电连接层421,使得上电极层423接入至M0S信号处理电路中。
[0081] 所述上电极层423与下电极层411之间具有相对重合面,所述上电极层423与所述第二金属互连层402之间具有相对重合面,从而使上电极层423、第二金属互连层402、下电极层411三者之间具有相对重合面,当环境水汽含量发生变化时,上电极层423与下电极层411之间的介质层的相对介电系数发生变化,从而使上电极层423与下电极层411之间的电容值发生改变。
[0082] 本实施例中,在平行于所述衬底100表面方向上,所述上电极层423的形状为梳状,所述上电极层423包括第一部分、以及第一部分电连接且平行分布的若干分立的第二部分,相邻第二部分之间暴露出第三介质层105表面,本实施例以上电极层423包括2个第二部分为例。在其他实施例中,在平行于衬底表面方向上,所述上电极层的剖面形状也可以为方形、圆形或折线形。
[0083] 所述上电极层423与第三子金属互连层433的材料相同,为铜、铝或钨,且利用同一道工艺步骤形成所述上电极层423和第三子金属互连层433。
[0084] 若无特别说明,后续工艺过程提供的示意图为在图15基础上进行的示意图。
[0085] 参考图16,在所述第三介质层105表面、上电极层423表面以及第三子金属互连层433表面形成第四介质层106 ;在所述M0S器件区I上方的第四介质层106内形成与多晶硅栅112电连接的第四导电插塞304 ;在所述M0S器件区I上方的第四介质层106表面形成与第四导电插塞304电连接的顶层金属互连层404 ;形成覆盖于顶层金属互连层404表面以及第四介质层106表面的顶层介质层107。
[0086] 有关第四介质层106、第四导电插塞304、顶层金属互连层404、以及顶层介质层107的形成方法可参考前述说明,在此不再赘述。
[0087] 本实施例在形成所述顶层介质层107之前,还形成了第四介质层106,在其他实施例中,若M0S器件区无需形成第四子金属互连层,则直接在第三介质层表面、第三子金属互连层表面以及上电极层表面形成顶层介质层。
[0088] 参考图17,在所述顶层介质层107表面形成光刻胶层108,所述光刻胶层108具有位于传感器区II上方的环形开口 112。
[0089] 所述环形开口 112包围的光刻胶层108投影于衬底100表面的图形为第四图形,所述多晶硅加热层122投影于衬底100表面的图形为第五图形,所述第五图形的边界被第四图形覆盖,从而防止多晶硅加热层122暴露在后续的各向同性刻蚀工艺环境中。所述上电极层423投影于衬底100表面的图形为第六图形,所述第六图形被第四图形覆盖,从而防止上电极层423暴露在后续的干法刻蚀环境中,避免上电极层423暴露在外界环境中。
[0090] 并且,本实施例中,所述环形开口 112位于伪金属互连层412的正上方,使得后续刻蚀形成环形凹槽的过程中,伪金属互连层412起到保护第一金属互连层401以及第一电连接层421的作用,以利于后续形成悬空结构的支撑臂。
[0091] 所述光刻胶层108为后续刻蚀顶层介质层107、第四介质层106、第三介质层105、第二介质层104、第一介质层103以及部分厚度的衬底100的掩膜,为形成悬空结构做准备。
[0092] 所述环形开口 112的尺寸与后续形成的隔热区域大小有关,若环形开口 112的尺寸过大,则后续形成的隔热区域所占的体积较大,造成形成CMOS湿度传感器所需的芯片面积大;若环形开口 112的尺寸过小,则后续形成的隔热区域所占的体积小,导致多晶硅加热层122产生的热量容易传递至不期望区域,CMOS湿度传感器的响应时间延迟。
[0093] 并且,若环形开口 112的尺寸过小,则相应后续形成的环形凹槽的尺寸也较小,当采用各向同性刻蚀工艺刻蚀环形凹槽暴露出的衬底100侧壁表面时,刻蚀气体到达所述衬底100侧壁表面的难度增加。同时,若环形开口 112的尺寸过大,则相应后续形成的环形凹槽的尺寸也较大,当形成湿敏材料层时,进入环形凹槽的湿敏材料的量较大,导致多晶硅加热层122产生的热量不易扩散出去,CMOS湿度传感器的散热性能差。
[0094] 为此,本实施例中,在平行于衬底100表面方向上,所述环形开口 112的尺寸为3微米至5微米。
[0095] 本实施例中,所述光刻胶层108内还具有子开口 113,所述子开口 113位于第二金属互连层402的上方,且所述子开口 113的尺寸小于第二金属互连层402的尺寸。
[0096] 后续沿所述子开口 113进行刻蚀,直至暴露出第二金属互连层402表面。若子开口 113的尺寸过小,则后续填充湿敏材料层的能力过弱。
[0097] 为此,本实施例中,在平行于衬底100表面方向上,所述子开口 113的尺寸为10微米至50微米。
[0098] 参考图18及图19,图18为在图17基础上的剖面结构示意图,图19为图13沿切割线CC1切割的基础上的剖面结构示意图,以所述光刻胶层108为掩膜,沿所述环形开口112(参考图17)暴露出的顶层介质层107进行刻蚀,直至刻蚀去除部分厚度的衬底100,在所述传感器区II上方形成环形凹槽109 ;同时沿子开口 113暴露出的顶层介质层107进行刻蚀,直至暴露出第二金属互连层402表面,在所述第二金属互连层402上方形成通孔110。
[0099] 具体的,采用干法刻蚀工艺,依次刻蚀顶层介质层107、第四介质层106、第三介质层105、第二介质层104以及第一介质层103,形成所述环形凹槽109 ;采用干法刻蚀工艺,依次顶层介质层107、第四介质层106以及第三介质层105,形成所述通孔110。
[0100] 所述干法刻蚀工艺对第二金属互连层402、第一电连接层421、第一金属互连层401、下电极层411的刻蚀速率很小,而对顶层介质层107、第四介质层106、第三介质层105、第二介质层104以及第一介质层103的刻蚀速率很大。
[0101] 由于传感器区II的伪金属互连层412横跨M0S器件区I和传感器区II的交界,干法刻蚀工艺对伪金属互连层412的刻蚀速率很小,因此干法刻蚀工艺不会对伪金属互连层421正下方的第二介质层104、第一金属互连层401、第一电连接层421造成刻蚀。
[0102] 并且,避免了第二电连接层422、第一金属互连层401以及第一电连接层421暴露在刻蚀环境中,从而提高多晶硅加热层122以及上电极层413中的电信号准确度,避免第二电连接层422、第一金属互连层402以及第一电连接层421暴露在后续刻蚀去除第二金属互连层402的刻蚀环境中。
[0103] 所述采用干法刻蚀工艺刻蚀去除的衬底100的厚度与后续形成的隔热区域的尺寸有关,若衬底100被刻蚀去除的厚度过小,则相应后续形成的隔热区域的尺寸过小,后续形成的悬空结构与衬底100之间的距离过小,所述多晶硅加热层122中的热量不易释放;若衬底100被刻蚀去除的厚度过大,则相应剩余的衬底100的厚度很小,容易造成多晶硅加热层122受到应力作用过强,导致多晶硅加热层122发生严重形变。并且,若衬底100被刻蚀去除的厚度过大,则相应后续在进行各向同性刻蚀工艺时传感器区II的衬底100会被刻穿。
[0104] 综合上述因素考虑,衬底100被刻蚀去除的厚度为衬底100初始厚度的1/30至1/3,例如,衬底100被刻蚀去除的厚度可以为衬底100初始厚度的1/10或1/5。
[0105] 本实施例中,所述采用干法刻蚀工艺刻蚀去除的衬底100厚度为5微米至10微米,例如可以为6微米或8微米;也可以认为,在垂直于衬底100表面方向上,所述环形凹槽109暴露出的衬底100侧壁尺寸为5微米至10微米。
[0106] 本实施例中,介质层的厚度为8微米至12微米,所述介质层为:第一介质层103、位于第一介质层103表面的第二介质层104、位于第二介质层104表面的第三介质层105、位于第三介质层105表面的第四介质层106、以及位于第四介质层106表面的顶层介质层107 ;在平行于衬底100表面方向上,所述环形凹槽109的尺寸为3微米至5微米。
[0107] 本实施例中,所述环形凹槽109的侧壁表面垂直于衬底100表面;在其他实施例中,在垂直于衬底100表面方向上,所述环形凹槽109的剖面形状还可以为倒梯形,使得环形凹槽109顶部尺寸大于环形凹槽109底部尺寸,从而使得后续的各向同性刻蚀工艺的刻蚀气体更容易进入环形凹槽109的底部,从而对环形凹槽109暴露出的衬底100侧壁表面进行刻蚀。
[0108] 由于后续会向通孔110内填充湿敏材料层,且尽量避免形成湿敏材料层过程中湿敏材料进入环形凹槽109内,本实施例中,在平行于衬底100表面方向上,所述环形凹槽109的尺寸为通孔110的尺寸的1/10至2/5。
[0109] 在一个具体实施例中,在平行于衬底100表面方向上,所述环形凹槽109的尺寸为3微米至5微米,所述通孔110的尺寸为10微米至50微米。当所述环形凹槽109的尺寸为4微米,所述通孔110的尺寸为25微米时,后续填充形成的湿敏材料层的性能最佳,且能有效避免湿敏材料层的材料进入环形凹槽109内。
[0110] 参考图20及图21,图20为在图18基础上的示意图,图21为在图19基础上的示意图,采用各向同性刻蚀工艺,沿所述环形凹槽109暴露出的衬底100侧壁表面进行刻蚀,在传感器区II上方形成悬空结构,所述悬空结构与衬底100之间具有隔热区域114。
[0111] 本实施例中,采用乂6匕进行所述各向同性刻蚀工艺,由于XeF2为干法刻蚀,且XeF2刻蚀工艺为化学性刻蚀,可以避免离子轰击所带来的离子损伤和电荷积累的问题。并且,XeF2R对衬底100进行刻蚀,而对介质层、金属互连层的刻蚀速率非常小甚至可以忽略不计,因此所述各向同性刻蚀工艺对M0S器件区I无不良影响,因此本实施例中形成悬空结构的工艺与标准CMOS工艺完全兼容。
[0112] 在平行于衬底100表面方向上,所述隔热区域114的尺寸为10微米至50微米,例如为15微米、20微米、25微米或35微米。
[0113] 在一个具体实施例中,采用乂亦2进行各向同性刻蚀工艺的工艺参数为:循环进行向刻蚀腔室内通入XeF2和抽取乂亦2的动作,刻蚀腔室内XeF 2压强为lOOPa至180Pa,且向刻蚀腔室内通入乂㊀匕后维持10秒至50秒,循环次数为5至15次。
[0114] 例如,刻蚀腔室内XeF2压强可以为120Pa、140Pa或150Pa,向刻蚀腔室内通入XeF2后维持15秒、20秒或30秒。
[0115] 由于XeF2S各向同性刻蚀工艺,因此在刻蚀形成悬空结构的过程中,所述各向同性刻蚀工艺既会刻蚀多晶硅加热层122正下方的衬底100,还会刻蚀位于器件区I的衬底100。参考图22及图23,图22为在图20基础上的示意图,图23为在图21基础上的示意图,刻蚀去除所述第二金属互连层402 (参考图20、21)。
[0116] 在形成所述隔热区域114之后,还包括步骤:湿法腐蚀去除位于通孔110下方的第二金属互连层402,形成位于所述通孔110下方的沟槽116。本实施例中,第二金属互连层402的材料为铝,采用氢氟酸溶液腐蚀去除所述第二金属互连层402。所述沟槽116的尺寸与第二金属互连层402的尺寸相同。
[0117] 在其他实施例中,也可以采用四甲基氢氧化铵溶液刻蚀去除所述第二金属互连层402 ;还可以在形成沟槽116之后形成所述隔热区域114。
[0118] 由于伪金属互连层412(参考图20、21)暴露在所述刻蚀环境中,因此在刻蚀去除所述第二金属互连层402的同时,刻蚀去除所述伪金属互连层412。而位于所述伪金属互连层412正下方的第二介质层104、第一电连接层421、第一金属互连层401均不会被刻蚀。
[0119] 本实施例中,所述悬空结构具有支撑臂,适于起到支撑悬空结构的作用;所述支撑臂为叠层结构,至少包括:位于所述伪金属互连层412正下方的第二介质层104、第一电连接层421、第一金属互连层401、以及下电极层411、第一介质层103。由于第一金属互连层401、第一电连接层421被第二介质层104覆盖,从而降低第一金属互连层401以及第一电连接层421被氧化或腐蚀的概率。
[0120]由于后续还会在沟槽116内填充满湿敏材料层,为了提高湿敏材料层的填充效果,本实施例中,在平行于衬底100表面方向上,所述沟槽116的尺寸为通孔110的尺寸的2倍至5倍。
[0121] 在一个具体实施例中,在平行于衬底100表面方向上,所述通孔110的尺寸为10微米至50微米,所述沟槽116的尺寸为20微米至200微米。
[0122] 当环形凹槽109的尺寸为4微米,通孔110的尺寸为25微米,沟槽116的尺寸为80微米时,后续形成的湿敏材料层对沟槽116以及通孔110的填充效果好,从而使得形成的湿敏材料层感应水汽的能力最优,且有效的避免湿敏材料层进入环形凹槽109中,从而使得CMOS湿度传感器的散热效果好。
[0123] 在去除所述第二金属互连层402之后,去除所述光刻胶层108 (参考图18)。
[0124] 参考图24,图24为在图22基础上的示意图,采用旋转涂覆工艺形成填充满所述沟槽116(参考图22)以及通孔110 (参考图22)的湿敏材料层115,所述湿敏材料层115还位于顶层介质层107表面。
[0125] 湿敏材料层115为上电极层423与下电极层411之间的电容介质的一部分,当湿敏材料层114吸收外界环境中的水汽之后,湿敏材料层115的相对介电系数会发生改变,从而使得上电极板423与下电极板411构成的电容器的电容值发生变化,通过测量电容值的变化,可以获取外界环境中的水汽含量,及获取外界环境的湿度。
[0126] 本实施例中,所述湿敏材料层115的材料为聚酰亚胺,采用旋转涂覆工艺形成所述湿敏材料层115。
[0127] 具体的,首先,采用滴管向顶层介质层107表面滴适量聚酞胺酸溶液,且保证聚酞胺酸溶液未进入环形凹槽109,接着,采用第一转速将聚酞胺酸均匀的涂覆在顶层介质层107表面、同时聚酞胺酸进入通孔110以及沟槽116,然后采用第二转速进入旋转涂覆工艺,所述第二转速大于第一转速,形成聚酰亚酸膜。这样做的好处在于:可以使聚酞胺酸填充满通孔110以及沟槽116,且尽量不进入环形凹槽109内。然后,对聚酰亚酸膜进行加热处理,使聚酰亚酸膜转化为湿敏材料层115。所述第一转速为1000转/分至1600转/分,所述第二转速为5000转/分至6500转/分。在一个具体实施例中,所述第一转速为1250转/分,所述第二转速为5600转/分时,沟槽116以及通孔110中的湿敏材料层115的填充效果好,且形成的湿敏材料层115的感湿性能优。
[0128] 为了提高形成的湿敏材料层115的感湿性能,防止湿敏材料层115在加热处理过程中破裂,加热处理的过程为:先以20摄氏度/分的速率从室温升至200摄氏度,在200摄氏度保温20分钟;然后以5摄氏度/分的速率从而200摄氏度升至300摄氏度,在300摄氏度保温1小时。
[0129] 在一个具体实施例中,在平行于衬底100表面方向上,所述通孔110的尺寸为10微米至50微米,所述沟槽116的尺寸为20微米至200微米,采用合理的环形凹槽109尺寸、沟槽116尺寸以及通孔110尺寸,使得湿敏材料层115较好的填充满沟槽116以及通孔110,而进入至环形凹槽109的量非常的少,有效的提高了 CMOS湿度传感器的散热性能。
[0130] 旋转涂覆工艺为标准CMOS工艺之一,因此本实施例中形成湿敏材料层115的工艺与标准CMOS工艺完全兼容,有效的降低了生产成本。
[0131] 参考图25,刻蚀去除位于顶层介质层107表面的湿敏材料层115。刻蚀去除位于顶层介质层107表面的湿敏材料层115,使得湿敏材料层115仅填充满沟槽116(参考图23)以及通孔110 (参考图23)。并且,前述在采用旋转涂覆工艺形成湿敏材料层115的过程中,会有少量的湿敏材料层115进入环形凹槽109内,所述反应离子刻蚀工艺还会刻蚀去除所述进入环形凹槽109内的湿敏材料层115。
[0132] 在一个实施例中,采用反应离子刻蚀工艺,反应离子刻蚀采用的气体为02、CF4SN2o
[0133] 本实施例中,在制作CMOS信号处理器件的同时,利用标准CMOS工艺制作形成CMOS湿度传感器,使得湿度传感器与CMOS信号处理器件集成在同一晶圆上。
[0134] 同时本实施例中在传感器区II形成了悬空结构,使得湿度传感器对多晶硅加热层122中的热量的利用率更高,从而加快湿度传感器的响应时间。
[0135] 本发明实施例提供一种CMOS湿度传感器,结合参考图14及参考图25,包括:
[0136] 衬底100,所述衬底100包括M0S器件区I以及传感器区II,所述M0S器件区I部分衬底100上形成有多晶硅栅112,所述传感器区II部分衬底100上形成有多晶硅加热层122,所述衬底100上形成有覆盖于多晶硅栅112表面以及多晶硅加热层122表面的第一介质层103 ;
[0137] 位于所述M0S器件区I上方的第一介质层103表面的第一子金属互连层431,所述第一子金属互连层431与多晶硅栅112电连接;
[0138] 位于所述传感器区II上方的第一介质层103表面的若干相互电绝缘的第一金属互连层401、第一电连接层421以及下电极层411,且所述第一金属互连层401、第一电连接层421、以及下电极层411横跨M0S器件区I与传感器区II的交界,其中,至少2个相互电绝缘的第一金属互连层401与多晶硅加热层122电连接;
[0139] 位于所述第一子金属互连层431表面、第一金属互连层401表面、下电极层411表面、以及第一介质层103表面的第二介质层104 ;
[0140] 位于所述M0S器件区I上方的第二介质层104表面的第二子金属互连层432,所述第二子金属互连层432与多晶硅栅112电连接;
[0141] 位于所述传感器区II上方的第二介质层104表面的第二电连接层422,所述第二电连接层422与第一电连接层421电连接;
[0142] 位于所述第二子金属互连层432表面、第二电连接层422表面、以及第二介质层104表面的第三介质层105 ;
[0143] 位于所述M0S器件区I上方的第三介质层105表面的第三子金属互连层433,且所述第三子金属互连层433与多晶硅栅112电连接;
[0144] 位于所述传感器区II上方的第三介质层105表面的与第二电连接层422电连接的上电极层423,且所述上电极层423与下电极层411之间具有相对重合面;
[0145] 位于所述第三子金属互连层433表面、上电极层423表面、以及第三介质层105表面的顶层介质层107 ;
[0146] 位于所述传感器区II的顶层介质层107、第三介质层105、第二介质层104、第一介质层103以及部分衬底100内环形凹槽109,所述环形凹槽109环绕第一金属互连层401、第一电连接层421、下电极层411、第二电连接层422以及上电极层423 ;
[0147] 位于所述传感器区II的隔热区域114,所述隔热区域114与环形凹槽109相互贯穿,且所述隔热区域114位于衬底100与多晶硅加热层122之间;位于所述传感器区II的顶层介质层107、以及部分厚度的第三介质层105内的通孔,以及位于剩余厚度的第三介质层105内的沟槽,所述沟槽与通孔相互贯穿,且所述沟槽与下电极层411之间具有相对重合面,所述沟槽与上电极层423之间具有相对重合面;
[0148] 填充满所述沟槽和通孔的湿敏材料层115。
[0149] 需要说明的是,图14中未示出环形凹槽109、隔热区域114、以及顶层介质层107。
[0150] 本实施例中,顶层介质层107与第三介质层105之间还形成有第四介质层106。
[0151] 还包括:位于所述传感器区II上方第一介质层103内的第一导电插塞301,所述第一导电插塞301与多晶硅加热层122以及第一金属互连层401电连接;位于所述传感器区II上方第二介质层104内的第二导电插塞302,所述第二导电插塞302与第一电连接层421以及第二电连接层422电连接;位于所述传感器区II上方第三介质层105内的第三导电插塞303,所述第三导电插塞303与第二电连接层422以及上电极层423电连接。
[0152] 所述悬空结构具有支撑臂,适于起到支撑悬空结构的作用;所述支撑臂为叠层结构,至少包括:第二介质层104、第一电连接层421、第一金属互连层401、下电极层411、以及第一介质层103。
[0153] 虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用