会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 太阳能 / 太阳能技术 / 光伏发电 / 一种光伏发电系统及其控制方法

一种光伏发电系统及其控制方法

阅读:98发布:2021-02-26

IPRDB可以提供一种光伏发电系统及其控制方法专利检索,专利查询,专利分析的服务。并且一种光伏发电系统,包括第一光伏组串、第一直流变换器、第二光伏组串、第二直流变换器和逆变器,逆变器的输入端包括第一输入端、中间输入端和第二输入端,其中第一光伏组串和第一直流变换器串联,第二光伏组串和第二直流变换器串联,第一直流变换器和第二直流变换器串联形成直流变换器串联线,第一直流变换器的输出正极与逆变器的第一输入端连接,直流变换器串联线与逆变器的中间输入端连接,第二直流变换器的输出负极与逆变器的第二输入端连接,逆变器对总母线电压Vb、子母线电压V1、子母线电压V2中的任意两个量能够独立控制,从而实现逆变器的输入功率和输出功率的动态平衡,保证系统稳定工作。,下面是一种光伏发电系统及其控制方法专利的具体信息内容。

1.一种光伏发电系统,包括第一光伏组串、第一直流变换器、第二光伏组串、第二直流变换器和逆变器,逆变器的输入端包括第一输入端、中间输入端和第二输入端,其中第一光伏组串和第一直流变换器串联,第二光伏组串和第二直流变换器串联,第一直流变换器和第二直流变换器串联形成直流变换器串联线,第一直流变换器的输出正极与逆变器的第一输入端连接,直流变换器串联线与逆变器的中间输入端连接,第二直流变换器的输出负极与逆变器的第二输入端连接。

2.如权利要求1所述的光伏发电系统,其特征在于,逆变器对总母线电压Vb、子母线电压V1、子母线电压V2中的任意两个量能够独立控制其中,逆变器的第一输入端口与中间输入端口之间的电压称为子母线电压V1,逆变器第二输入端与中间输入端之间的电压称为子母线电压V2,总母线电压Vb(Vb=V1+V2)是指实时采集的逆变器的第一输入端和第二输入端之间的电压。

3.如权利要求2所述的光伏发电系统,其特征在于,逆变器还包括逆变桥、滤波器、控制系统和输出端,逆变桥与滤波器连接,其中逆变器的控制系统与逆变器的输入端、输出端和逆变桥连接,控制系统包括总母线电压控制模块、电压差控制模块、PWM控制模块和电流控制模块,其中,总母线电压控制模块用于与逆变器的第一输入端和电流控制模块连接,电流控制模块还用于与PWM控制模块连接,PWM控制模块还与电压差控制模块和逆变器的逆变桥连接,电压差控制模块还与逆变器的中间输入端连接,其中控制系统通过总母线电压控制模块、电压差控制模块、PWM控制模块和电流控制模块对总母线电压Vb、子母线电压V1、子母线电压V2中的任意两个量独立控制。

4.如权利要求3所述的光伏发电系统,其特征在于,逆变桥中有多个功率开关管,将影响子母线电压V1的功率开关管分成一组,它们的占空比为第一占空比D1;将影响子母线电压V2的功率开关管分成一组,它们的占空比为第二占空比D2,控制系统通过总母线电压控制模块、电压差控制模块、PWM控制模块和电流控制模块能够对第一占空比D1和第二占空比D2进行独立调节,从而实现对逆变器中总母线电压Vb、子母线电压V1、子母线电压V2中的任意两个量的独立控制。

5.如权利要求4所述的光伏发电系统,其特征在于,控制系统通过将总母线电压Vb、逆变器输出相电流Igrid和子母线电压V1分别与预设总母线参考电压Vbref、预设参考电流Iref和预设子母线参考电压V1ref分别进行比较,根据比较结果对第一占空比D1和第二占空比D2进行独立调节,从而实现对逆变器中总母线电压Vb、子母线电压V1、子母线电压V2中的任意两个量的独立控制。

6.如权利要求3所述的光伏发电系统,其特征在于,逆变器的输出端包括U输出端、V输出端和W输出端,逆变器的输出端能够与电网或者负载连接。

7.如权利要求1所述的光伏发电系统,其特征在于,第一光伏组串和第二光伏组串中,所串联的组件个数相等或不相等,第一光伏组串和第二光伏组串串联形成光伏组串串联线,光伏组串串联线与第一直流变换器的输入负极和第二直流变换器的输入正极相连。

8.如权利要求1所述的光伏发电系统,其特征在于,逆变器为三电平逆变器,直流变换器是具有最大功率点跟踪功能的直流变换器。

9.如权利要求1所述的光伏发电系统,其特征在于,逆变器为k电平逆变器,其中k大于

3,直流变换器是具有最大功率点跟踪功能的直流变换器。

10.一种用于权利要求1-9中任一项所述的光伏发电系统的控制方法,其中,在步骤102,对总母线电压Vb、逆变器输出相电流Igrid、子母线电压V1进行实时采样;

在步骤104,判断总母线电压Vb是否大于预设总母线参考电压Vbref,如果总母线电压Vb大于预设总母线参考电压Vbref,则在步骤106增大预设参考电流Iref,使得逆变器输出相电流Igrid增大;否则,在步骤108减小预设参考电流Iref,使得逆变器输出相电流Igrid减少;

在步骤110,判断逆变器输出相电流Igrid是否大于预设参考电流Iref,如果逆变器输出相电流Igrid大于预设参考电流Iref,则在步骤112,减小第一占空比D1和第二占空比D2;否则在步骤114,增大第一占空比D1和第二占空比D2;

在步骤116,判断子母线电压V1是否大于预设子母线参考电压V1ref,如果子母线电压V1大于预设子母线参考电压V1ref,且在步骤117判断出子母线电压V1与预设子母线参考电压V1ref之间的偏差大于预定限值,则在步骤118,增大第一占空比D1并减小第二占空比D2;否则程序由步骤117返回步骤102;如果子母线电压V1不大于预设子母线参考电压V1ref且在步骤

119判断出子母线电压V1与预设子母线参考电压V1ref之间的偏差大于预定限值,则在步骤

120减小第一占空比D1并增大第二占空比D2;否则程序由步骤119返回步骤102。

11.一种光伏发电系统,包括p个光伏组串、q个光伏组串、p个并联的直流变换器、q个并联的直流变换器和逆变器,p和q为大于0的自然数,其中p个光伏组串分别接入p个并联的直流变换器的输入端,q个光伏组串分别接入q个并联的直流变换器的输入端,p个并联的直流变换器的输出负极与q个并联的直流变换器的输出正极相连形成直流变换器串联线,p个并联的直流变换器的输出正极与逆变器的第一输入端相连,q个并联的直流变换器的输出负极与逆变器的第二输入端相连,直流变换器串联线与逆变器的中间输入端相连。

12.如权利要求11所述的光伏发电系统,其特征在于,每个直流变换器接入的光伏组串中,组件的数量是相等的或者不相等的。

13.如权利要求11所述的光伏发电系统,其特征在于,逆变器为三电平逆变器,逆变器的输出端包括U输出端、V输出端和W输出端,逆变器的输出端能够与电网或者负载连接,直流变换器是具有最大功率点跟踪功能的直流变换器。

14.如权利要求11所述的光伏发电系统,其特征在于,逆变器为k电平逆变器,其中k为大于3的自然数,逆变器的输出端包括U输出端、V输出端和W输出端,逆变器的输出端能够与电网或者负载连接,直流变换器是具有最大功率点跟踪功能的直流变换器。

15.一种光伏发电系统,包括(k-1)个光伏组串、(k-1)个直流变换器和1个k电平逆变器,k电平逆变器输入端的直流母线分成(k-1)段子母线,(k-1)个光伏组串分别与(k-1)个直流变换器的输入端连接,(k-1)个直流变换器依次串联,并分别与逆变器输入端的(k-1)段子母线连接,逆变器对总母线电压Vb和子母线电压Vi能够独立控制,其中1≤i≤(k-1),i为自然数,k为大于3的自然数。

16.如权利要求15所述的光伏发电系统,其特征在于,(k-1)个光伏组串中,每个组串所包含的组件个数相等或者不相等,直流变换器是具有最大功率点跟踪功能的直流变换器。

说明书全文

一种光伏发电系统及其控制方法

技术领域

[0001] 本发明涉及一种发电系统及控制方法。具体而言,本发明涉及一种光伏发电系统及其控制方法。

背景技术

[0002] 现有技术的光伏发电系统中,n个光伏组件串联后,形成光伏组串,然后与入直流变换器连接,直流变换器与光伏逆变器连接,光伏组串的输出(直流变换器的输入)的电压为1000Vdc。如果将光伏组件串联的个数由原来的n个变为2n个,则光伏组串的输出电压上升到2000Vdc。光伏组串输出电压升高后,一方面能减少了光伏发电系统的线缆损耗,另一方面,减少了光伏发电系统的线缆,增大了直流变换器和光伏逆变器的功率密度,有效降低了光伏发电系统的成本。升压后的光伏发电系统如图1所示,串联的2n个光伏组件1的正极连接到带有MPPT(MPPT是“Maximum Power Point Tracking”的缩写,MPPT的译文是“最大功率点跟踪”)功能的直流变换器2的输入正极2a,串联的2n个光伏组件1的负极连接到带有MPPT功能的直流变换器2的输入负极2b,直流变换器2的输出正极2c连接到逆变器3的输入正极3a,直流变换器2的输出负极2d连接到逆变器3的输入负极3b,逆变器3将来自直流变换器2的直流电转换为交流的三相交流电(3U,3V,3W),逆变器3的输出可以馈电入网或者与负载连接。在一个实例中,逆变器3可以为二电平逆变器。相比于1000Vdc的光伏发电系统,2000Vdc的光伏发电系统可大幅度增大逆变器的功率密度,直流变换器和逆变器的价格降低30%以上,同时,大幅度减少了光伏发电系统的线缆、汇流箱等设施,降低了光伏发电系统的的成本。
[0003] 现有技术的升压后的光伏发电系统具有以下缺陷:
[0004] 1)光伏发电系统的电压升高到2000Vdc后,直流变换器内部需要采用耐压等级更高的功率器件,2000Vdc以上耐压等级的功率器件和1200Vdc的功率器件相比,2000Vdc以上耐压等级的功率器件损耗大,降低了光伏发电系统的效率。
[0005] 2)光伏发电系统的电压升高到2000V后,为节省成本,直流变换器和逆变器的功率等级大幅提高,但是含有MPPT功能的直流变换器的数量大幅度减少,导致光伏组件最大功率跟踪的效率降低。
[0006] 3)光伏组件串联后,光伏组串的逆变器输出相电流大小取决于该光伏组串中逆变器输出相电流最小的组件,即组件串联后,光伏组串的逆变器输出相电流存在“木桶效应”。因此,同等条件下,与2串由n个组件串联而成的组串对比,2n个组件串联而成的组串,由于存在电流失配问题,其输出的功率更小,这将造成光伏发电系统发电量的下降。
[0007] 为了解决现有技术的上述问题,本发明提出了一种光伏发电系统,其提高了直流变换器的效率和光伏电站最大功率跟踪的效率,改善了2n个组件串联时的电流失配问题,提高了光伏发电系统的发电量。

发明内容

[0008] 本发明提出了一种光伏发电系统及其控制方法,旨在解决现有技术中光伏发电系统存在电流失配和发电量不高的问题。
[0009] 本发明的一个技术方案提供了一种光伏发电系统,包括第一光伏组串、第一直流变换器、第二光伏组串、第二直流变换器和逆变器,逆变器的输入端包括第一输入端、中间输入端和第二输入端,其中第一光伏组串和第一直流变换器串联,第二光伏组串和第二直流变换器串联,第一直流变换器和第二直流变换器串联形成直流变换器串联线,第一直流变换器的输出正极与逆变器的第一输入端连接,直流变换器串联线与逆变器的中间输入端连接,第二直流变换器的输出负极与逆变器的第二输入端连接。
[0010] 根据本发明的上述一个技术方案提供的光伏发电系统,其中逆变器对总母线电压Vb、子母线电压V1、子母线电压V2中的任意两个量能够独立控制。
[0011] 根据本发明的上述一个技术方案提供的光伏发电系统,其中逆变器还包括逆变桥、滤波器、控制系统和输出端,逆变桥与滤波器连接,其中逆变器的控制系统与逆变器的输入端、输出端和逆变桥连接,控制系统包括总母线电压控制模块、电压差控制模块、PWM控制模块和电流控制模块,其中,总母线电压控制模块用于与逆变器的第一输入端和电流控制模块连接,电流控制模块还用于与PWM控制模块连接,PWM控制模块还与电压差控制模块和逆变器的逆变桥连接,电压差控制模块还与逆变器的中间输入端连接,其中控制系统通过总母线电压控制模块、电压差控制模块、PWM控制模块和电流控制模块对总母线电压Vb、子母线电压V1、子母线电压V2中的任意两个量独立控制。
[0012] 根据本发明的上述一个技术方案提供的光伏发电系统,其中逆变桥中有多个功率开关管,将影响子母线电压V1的功率开关管分成一组,它们的占空比为第一占空比D1;将影响子母线电压V2的功率开关管分成一组,它们的占空比为第二占空比D2,控制系统通过总母线电压控制模块、电压差控制模块、PWM控制模块和电流控制模块能够对第一占空比D1和第二占空比D2进行独立调节,从而实现对逆变器中总母线电压Vb、子母线电压V1、子母线电压V2中的任意两个量的独立控制。
[0013] 根据本发明的上述一个技术方案提供的光伏发电系统,其中控制系统通过将总母线电压Vb、逆变器输出相电流Igrid和子母线电压V1分别与预设总母线参考电压Vbref、预设参考电流Iref和预设子母线参考电压V1ref分别进行比较,根据比较结果对第一占空比D1和第二占空比D2进行独立调节,从而实现对逆变器中总母线电压Vb、子母线电压V1、子母线电压V2中的任意两个量的独立控制。
[0014] 根据本发明的上述一个技术方案提供的光伏发电系统,其中逆变器的输出端包括U输出端、V输出端和W输出端,逆变器的输出端能够与电网或者负载连接。
[0015] 根据本发明的上述一个技术方案提供的光伏发电系统,其中第一光伏组串和第二光伏组串中,所串联的组件个数相等或不相等,第一光伏组串和第二光伏组串串联形成光伏组串串联线,光伏组串串联线与第一直流变换器的输入负极和第二直流变换器的输入正极相连。
[0016] 根据本发明的上述一个技术方案提供的光伏发电系统,其中逆变器为三电平逆变器,直流变换器是具有最大功率点跟踪功能的直流变换器。
[0017] 根据本发明的上述一个技术方案提供的光伏发电系统,其中逆变器为k电平逆变器,其中k大于3,直流变换器是具有最大功率点跟踪功能的直流变换器。
[0018] 本发明的另一个技术方案提供了一种用于光伏发电系统的控制方法,其中,[0019] 在步骤102,对总母线电压Vb、逆变器输出相电流Igrid、子母线电压V1进行实时采样;
[0020] 在步骤104,判断总母线电压Vb是否大于预设总母线参考电压Vbref,如果总母线电压Vb大于预设总母线参考电压Vbref,则在步骤106增大预设参考电流Iref,使得逆变器输出相电流Igrid增大;否则,在步骤108减小预设参考电流Iref,使得逆变器输出相电流Igrid减少;
[0021] 在步骤110,判断逆变器输出相电流Igrid是否大于预设参考电流Iref,如果逆变器输出相电流Igrid大于预设参考电流Iref,则在步骤112,减小第一占空比D1和第二占空比D2;否则在步骤114,增大第一占空比D1和第二占空比D2;
[0022] 在步骤116,判断子母线电压V1是否大于预设子母线参考电压V1ref。如果子母线电压V1大于预设子母线参考电压V1ref,且在步骤117判断出子母线电压V1与预设子母线参考电压V1ref之间的偏差大于预定限值,则在步骤118,增大第一占空比D1并减小第二占空比D2;否则程序由步骤117返回步骤102;如果子母线电压V1不大于预设子母线参考电压V1ref且在步骤119判断出子母线电压V1与预设子母线参考电压V1ref之间的偏差大于预定限值,则在步骤120减小第一占空比D1并增大第二占空比D2;否则程序由步骤119返回步骤102。
[0023] 本发明的又一技术方案提供了一种光伏发电系统,包括p个光伏组串、q个光伏组串、p个并联的直流变换器、q个并联的直流变换器和逆变器,p和q为大于0的自然数,其中p个光伏组串分别接入p个并联的直流变换器的输入端,q个光伏组串分别接入q个并联的直流变换器的输入端,p个并联的直流变换器的输出负极与q个并联的直流变换器的输出正极相连形成直流变换器串联线,p个并联的直流变换器的输出正极与逆变器的第一输入端相连,q个并联的直流变换器的输出负极与逆变器的第二输入端相连,直流变换器串联线与逆变器的中间输入端相连。
[0024] 根据本发明的上述又一技术方案提供的光伏发电系统,其中每个直流变换器接入的光伏组串中,组件的数量是相等的或者不相等的。
[0025] 根据本发明的上述又一技术方案提供的光伏发电系统,其中逆变器为三电平逆变器,逆变器的输出端包括U输出端、V输出端和W输出端,逆变器的输出端能够与电网或者负载连接,直流变换器是具有最大功率点跟踪功能的直流变换器。
[0026] 根据本发明的上述又一技术方案提供的光伏发电系统,其中逆变器为k电平逆变器,其中k大于3,逆变器的输出端包括U输出端、V输出端和W输出端,逆变器的输出端能够与电网或者负载连接,直流变换器是具有最大功率点跟踪功能的直流变换器。
[0027] 本发明的再一技术方案提供了一种光伏发电系统,包括(k-1)个光伏组串、(k-1)个直流变换器和1个k电平逆变器,k电平逆变器输入端的直流母线分成(k-1)段子母线,(k-1)个光伏组串分别与(k-1)个直流变换器的输入端连接,(k-1)个直流变换器依次串联,并分别与逆变器输入端的(k-1)段子母线连接,逆变器对总母线电压Vb和子母线电压Vi能够独立控制,其中1≤i≤(k-1),i为自然数,k为大于3的自然数。
[0028] 根据本发明的上述再一技术方案提供的一种光伏发电系统,其中(k-1)个光伏组串中,每个组串所包含的组件个数相等或者不相等,直流变换器是具有最大功率点跟踪功能的直流变换器。
[0029] 根据本发明的光伏发电系统相比于现有技术的光伏发电系统具有以下技术效果:1)直流变换器可以沿用原1000V系统的方案,效率高,技术风险低;2)本发明的光伏发电系统的MPPT效率更高,因而根据本发明的光伏发电系统效率高;3)子母线电压可以在一定范围调整,降低了光伏组串之间的功率失配率,提高了各个直流变换器的输出效率。

附图说明

[0030] 参照附图,本发明的公开内容将变得更易理解。本领域技术人员容易理解的是:这些附图仅仅用于举例说明本发明的技术方案,而并非意在对本发明的保护范围构成限制。图中:
[0031] 图1示出了现有技术的光伏发电系统的拓扑结构图。
[0032] 图2示出了根据本发明的一个实施例的光伏发电系统的拓扑结构图。
[0033] 图3示出了根据本发明的另一个实施例的光伏发电系统的拓扑结构图。
[0034] 图4示出了如图2和图3所示的根据本发明的一个实施例的光伏发电系统的控制框图。
[0035] 图5示出了根据本发明的又一个实施例的光伏发电系统的拓扑结构图。
[0036] 图6示出了根据本发明的再一个实施例的光伏发电系统的拓扑结构图。以及[0037] 图7示出了用于如图4所示的根据本发明的一个实施例的光伏发电系统的控制方法的流程图。
[0038] 部件及标号列表
[0039]1 2n个光伏组件
2 直流变换器
2a 输入正极
2b 输入负极
2c 输出正极
2d 输出负极
3 逆变器
3a 第一输入端
3b 第二输入端
3u U相
3v V相
3w W相
10 第一光伏组串
20 第二光伏组串
12 第一直流变换器
12a 输入正极
[0040]12b 输入负极
12c 输出正极
12d 输出负极
22 第二直流变换器
22a 输入正极
22b 输入负极
22c 输出正极
22d 输出负极
30 三电平逆变器
30a 第一输入端
30b 第二输入端
30c 中间输入端
30u U相
30v V相
30w W相
50 总母线电压控制模块
51 电压差控制模块
52 PWM控制模块
Igrid 逆变器输出相电流
Iref 预设参考电流
53 电流控制模块
100 直流变换器串联线
101 光伏组串串联线
300 多电平逆变器
300u U相
300v V相
300w W相
300a 多电平逆变器的第一输入端
300k 多电平逆变器的第k输入端

具体实施方式

[0041] 图2-7和以下说明描述了本发明的可选实施方式以教导本领域技术人员如何实施和再现本发明。为了教导本发明技术方案,已简化或省略了一些常规方面。本领域技术人员应该理解源自这些实施方式的变型或替换将落在本发明的范围内。本领域技术人员应该理解下述特征能够以各种方式组合以形成本发明的多个变型。由此,本发明并不局限于下述可选实施方式,而仅由权利要求和它们的等同物限定。
[0042] 逆变器是一种将直流电转化为交流电的装置。逆变器的输出依据并网的要求,可以为三相四线(带N线)制或三相三线制(不带N线)。对于三相四线(带N线)制而言,逆变器的输出U、V、W代表U相、V相和W相(火线),逆变器的输出N为中性线(零线)。逆变器输入端的直流母线由串联的n-1个母线电容C1、C2、……、Cn-1分成n-1段,每段直流母线的电压分别为V1、V2、……、Vn-1,每段直流母线可以分别接入与光伏组串连接的直流变换器。例如,在本申请的图2中,三电平逆变器输入端的直流母线由串联的母线电容C1和C2分成2段,每段直流母线可以接入与n个串联的光伏组件连接的带有最大功率点跟踪功能的直流变换器。k电平逆变器中,通过调节逆变桥中的功率开关管的占空比D(Duty的缩写),可以控制逆变器的输入母线电压和输出相电流。因为逆变桥中有多个功率开关管,每个功率开关管的占空比D都可以独立控制。这里将影响子母线电压V1的功率开关管分成一组,它们的占空比为第一占空比D1;将影响子母线电压V2的功率开关管分成一组,它们的占空比为第二占空比D2;依次类推,k电平逆变器共有n-1组占空比D1、D2、……、Dk-1,分别影响子母线电压V1、V2、……、Vk-1。在本申请中,光伏组串由多个光伏组件串联形成。
[0043] 图2示出了根据本发明的一个实施例的光伏发电系统的拓扑结构图。如图2所示,根据本发明的一个实施例的光伏发电系统包括第一光伏组串10、第一直流变换器12、第二光伏组串20、第二直流变换器22和逆变器30,逆变器的输入端包括第一输入端30a、中间输入端30c和第二输入端30b,其中第一光伏组串10和第一直流变换器12串联,第二光伏组串20和第二直流变换器22串联,第一直流变换器12和第二直流变换器22串联形成直流变换器串联线100,第一直流变换器的输出正极12c与逆变器的第一输入端30a连接,直流变换器串联线100与逆变器的中间输入端30c连接,第二直流变换器的输出负极22d与逆变器的第二输入端30b连接,逆变器对总母线电压Vb和子母线电压V1能够独立控制。
[0044] 第一光伏组串10和第二光伏组串20分别包括n个串联的光伏组件,第一光伏组串10和第二光伏组串20串联形成光伏组串串联线101,光伏组串串联线101与第一直流变换器的输入负极12b和第二直流变换器的输入正极22a相连。
[0045] 具体而言,第一直流变换器12的输出负极12d和第二直流变换器22的输出正极22c串联,形成直流变换器串联线100,直流变换器串联线100与逆变器30的中间输入端30c相连。
[0046] 具体而言,第一光伏组串10的正极连接到第一直流变换器12的输入正极12a,第一光伏组串10的负极12b连接到第一直流变换器12的输入负极12b;第二光伏组串20的正极连接到第二直流变换器22的输入正极22a,第二光伏组串20的负极连接到第二直流变换器22的输入负极22b。
[0047] 具体而言,如图2所示,逆变器为三电平逆变器30,三电平逆变器30的第一输入端30a与三电平逆变器30的中间输入端30c之间的电压称为子母线电压V1,三电平逆变器30的第二输入端30b与三电平逆变器30的中间输入端30c之间的电压称为子母线电压V2,总母线电压Vb(Vb=V1+V2)是指实时采集的三电平逆变器30的第一输入端30a和第二输入端30b之间的电压。在光伏发电站,子母线电压V1与子母线电压V2之间可能存在较大的差别,使得三电平逆变器30会出现过压故障。
[0048] 图3示出了根据本发明的另一个实施例的光伏发电系统的拓扑结构图。如图3所示,其与图2中的光伏发电系统的差别仅在于,第一光伏组串10的负极与第二光伏组串20的正极相连,形成光伏组串串联线101,光伏组串串联线101与第一直流变换器12的输入负极和第二直流变换器22的输入正极相连。
[0049] 在图2和图3中,逆变器的输入功率Pin=P1+P2=V1I1+V2I2(公式1),逆变器的输入功率Pin等于直流变换器12和直流变换器22的输出功率P1和P2的和,I1和I2分别表示直流变换器12和直流变换器22的输出电流。逆变器的输出功率Pout=ηPin=3Vg*Igrid(公式2),其中,η为逆变器转换效率,Vg为逆变器输出相电压,Igrid为逆变器输出相电流。直流变换器的功能是寻找光伏组串的最大功率点,并将最大功率输送至逆变器。其中子母线电压V1和V2是受逆变器控制的,通过控制子母线电压V1和V2,可以达到逆变器的输入功率和输出功率的动态平衡,保证系统稳定工作。
[0050] 当逆变器的输入功率Pin大于逆变器的输出功率Pout和逆变器的损耗功率Ploss的和时,逆变器多余的输入功率将被逆变器母线电容C1和C2吸收,导致总母线电压Vb上升,总母线电压Vb偏离预设总母线参考电压Vbref。此时,将逆变桥中功率开关管的占空比D逐渐调大,则逆变器的输出功率增大,即逆变器输出相电流Igrid(逆变器输出功率大小与逆变器输出相电流Igrid成线性关系)将增大。当调整到逆变器的输出功率Pout和逆变器的损耗功率Ploss的和大于逆变器的输入功率Pin时,总母线电压Vb则下降。
[0051] 在调整总母线电压的同时,如果子母线电压V1与预设子母线参考电压V1ref的偏差1 1
△V 超出预定限值,调整第一占空比D1,可以稳定子母线电压V1。即△V>0,且超出预定限值,则增大第一占空比D1,减少第二占空比D2,使得电容C1放出更多能量,子母线电压V1下降;△V1<0,且超出预定限值,则减少第一占空比D1,增大第二占空比D2,使得电容C1放出更少的能量,子母线电压V1上升。而子母线电压V2(V2=Vb-V1)也可以单独调整。
[0052] 因此,可以看出,总母线电压Vb、子母线电压V1和子母线电压V2的调整是通过调节逆变器中功率开关管的占空比D,改变逆变器输出相电流Igrid,从而实现逆变器的输入功率和输出功率的动态平衡,保证系统稳定工作。
[0053] 图4示出了如图2和图3所示的根据本发明的一个实施例的光伏发电系统的控制框图。如图4所示,逆变器30包括输入端、逆变桥、滤波器、控制系统和输出端,逆变桥与滤波器连接,其中逆变器的控制系统与逆变器的输入端、输出端和逆变桥连接,控制系统包括总母线电压控制模块50、电压差控制模块51、PWM控制模块52和电流控制模块53,其中,总母线电压控制模块用于与逆变器的第一输入端30a和电流控制模块53连接,电流控制模块53还用于与PWM控制模块52连接,PWM控制模块52还与电压差控制模块51和逆变器的逆变桥连接,电压差控制模块51还与逆变器的中间输入端30c连接,其中控制系统通过总母线电压控制模块50、电压差控制模块51、PWM控制模块52和电流控制模块53可以对总母线电压Vb、子母线电压V1和子母线电压V2中任意两者进行独立控制。在一个实例中,逆变器为三电平逆变器30,逆变器30的输出U、V、W与电网或者负载相连。在另外的实例中,逆变器为k电平逆变器,其中n大于3。
[0054] 对于逆变器而言,逆变桥中有多个功率开关管,每个功率开关管的占空比D能够独立控制。对于三电平逆变器30而言,将影响子母线电压V1的功率开关管分成一组,它们的占空比为第一占空比D1;将影响子母线电压V2的功率开关管分成一组,它们的占空比为第二占空比D2,控制系统通过总母线电压控制模块50、电压差控制模块51、PWM控制模块52和电流控制模块53能够对第一占空比D1和第二占空比D2进行独立调节,使得总母线电压Vb、子母线电压V1和子母线电压V2中任意两者可进行独立控制。具体而言,控制系统通过将总母线电压Vb、逆变器输出相电流Igrid和子母线电压V1分别与预设总母线参考电压Vbref、预设参考电流Iref和预设子母线参考电压V1ref分别进行比较,根据比较结果对第一占空比D1和第二占空比D2进行独立调节,使得逆变器的总母线电压Vb和子母线电压V1能够独立控制,从而实现子母线电压V1和子母线电压V2的独立控制。由于子母线电压V1和子母线电压V2能够独立控制,可以达到逆变器30的输入功率和输出功率的动态平衡,保证光伏发电系统稳定工作。
[0055] 再具体而言,图7示出了用于如图4所示的根据本发明的一个实施例的光伏发电系统的控制方法的流程图。如图7所示:
[0056] 在步骤100,光伏发电系统的控制方法开始;
[0057] 在步骤102,对总母线电压Vb、逆变器输出相电流Igrid、子母线电压V1进行实时采样;
[0058] 在步骤104,判断总母线电压Vb是否大于预设总母线参考电压Vbref。如果总母线电压Vb大于预设总母线参考电压Vbref,则在步骤106则增大预设参考电流Iref,使得逆变器输出相电流Igrid增大;否则,在步骤108减小预设参考电流Iref,使得逆变器输出相电流Igrid减少;
[0059] 在步骤110,判断逆变器输出相电流Igrid是否大于预设参考电流Iref。如果逆变器输出相电流Igrid大于预设参考电流Iref,则在步骤112,减小第一占空比D1和第二占空比D2;否则在步骤114,增大第一占空比D1和第二占空比D2;
[0060] 在步骤116,判断子母线电压V1是否大于预设子母线参考电压V1ref。如果子母线电压V1大于预设子母线参考电压V1ref,且偏差(△V1等于子母线电压V1减去预设子母线参考电压V1ref)大于预定限值(步骤117),在步骤118,增大第一占空比D1并减小第二占空比D2;否则程序由步骤117返回步骤102;如果子母线电压V1不大于预设子母线参考电压V1ref且偏差大于预定限值(步骤119),则在步骤120减小第一占空比D1并增大第二占空比D2;否则程序由步骤119返回步骤102。
[0061] 在步骤104中,需要说明的是,如果总母线电压Vb大于预设总母线参考电压Vbref则说明逆变器输出相电流Igrid偏小,逆变器输入功率大于逆变器输出功率与逆变器损耗功率之和,逆变器的多余的输入功率给母线电容C1和C2充电,导致实际电压Vb上升,大于预设电压Vbref,为此,需要执行步骤106,否则执行步骤108。
[0062] 由于第一占空比D1和第二占空比D2能够独立调节,因此,逆变器的总母线电压Vb和子母线电压V1能够独立控制,即子母线电压V1和V2能够实现独立控制,可以达到逆变器30的输入功率和输出功率的动态平衡,保证光伏发电系统稳定工作。
[0063] 图5示出了根据本发明的又一个实施例的光伏发电系统的拓扑结构图。如图5所示,一种光伏发电系统,包括p个光伏组串、q个光伏组串、p个并联的直流变换器、q个并联的直流变换器和一个逆变器,其中p个光伏组串分别接入p个并联的直流变换器的输入端,,q个光伏组串分别接入q个并联的直流变换器的输入端,p个并联的直流变换器的输出正极与三电平逆变器30的第一输入端30a相连,q个并联的直流变换器的输出负极与三电平逆变器30的第二输入端30b相连,直流变换器串联线与逆变器的中间输入端30c相连。三电平逆变器30将直流电转换为三相交流电(U、V、W),三电平逆变器30的三相输出与电网或者负载相连。在该实施例中,p和q至少为1。替换地,图5中所示的逆变器可以为k电平逆变器,其中k大于3,逆变器的输出端包括U输出端、V输出端和W输出端,逆变器的输出端能够与电网或者负载连接,直流变换器是具有最大功率点跟踪功能的直流变换器。
[0064] 图6示出了根据本发明的再一个实施例的光伏发电系统的拓扑结构图。如图6所示,光伏发电系统包括(k-1)个光伏组串、(k-1)个直流变换器和1个k电平逆变器,k电平逆变器输入端的直流母线分成(k-1)段子母线,(k-1)个光伏组串分别与(k-1)个直流变换器的输入端连接,(k-1)个直流变换器依次串联,并分别与逆变器输入端的(k-1)段子母线连接,逆变器对总母线电压Vb和子母线电压Vi能够独立控制,其中1≤i≤(k-1),i为自然数,k为大于3的自然数。具体而言,如果子母线电压Vi与预设字母线参考电压Viref有偏差,则根据图7的调节方式调整相应的占空比Di。
[0065] 具体而言,第一直流变换器的输出正极与多电平逆变器300的第一输入端300a相连,第一直流变换器的输出负极与第二直流变换器的输入正极相连,形成第一直流变换器串联线,第一直流变换器串联线与多电平逆变器300的第二输入端300b相连,按照此方式,第(k-2)个直流变换器的输出负极与第(k-1)个直流变换器的输出正极串联形成的第(k-2)个直流变换器串联线与多电平逆变器300的第(k-1)个输入端相连,第(k-1)个直流变换器的输出负极与多电平逆变器300的第k个输入端相连,多电平逆变器300用于将输入的直流电转换为三相交流电(300U、300V、300W),多电平逆变器300的输出与电网相连或者与负载相连。可选地,k至少为3。
[0066] 根据本发明的光伏发电系统相比于现有技术的光伏发电系统具有以下技术效果:1)直流变换器可以沿用原1000V系统的方案,效率高,技术风险低;2)本发明的光伏发电系统的MPPT效率更高,因而根据本发明的光伏发电系统效率高;3)子母线电压可以在一定范围调整,降低了光伏组串之间的功率失配率,提高了各个直流变换器的输出效率。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用