会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~

机器人控制

阅读:106发布:2020-06-10

IPRDB可以提供机器人控制专利检索,专利查询,专利分析的服务。并且一种用于控制机械系统的方法,机械系统具有通过多个驱动接头互连的多个部件,该方法包括:测量驱动接头周围或驱动接头处的转矩或者力,形成代表测量的转矩或者力的负荷信号;接收代表系统的期望状态的运动要求信号;根据运动要求信号和负荷信号执行阻抗控制算法,以形成指示用于每个驱动接头的目标构造的目标信号;测量每个驱动接头的构造,形成代表测量构造的状态信号;以及通过对于每个接头比较由目标信号指示的该接头的目标构造与由状态信号指示的该接头的测量构造,来形成用于接头的一组驱动信号。,下面是机器人控制专利的具体信息内容。

1.一种用于控制机械系统的方法,所述机械系统具有通过多个驱动接头互连的多个部件,所述方法包括:测量所述驱动接头周围或所述驱动接头处的转矩或者力,并且形成代表测量转矩或者力的负荷信号;

接收代表所述系统的期望状态的运动要求信号;

根据所述运动要求信号和所述负荷信号执行阻抗控制算法,以形成指示用于每个驱动接头的目标构造的目标信号;

测量每个驱动接头的构造,并且形成代表测量构造的状态信号;以及通过对于每个接头比较由所述目标信号指示的该接头的所述目标构造与由所述状态信号指示的该接头的所述测量构造,来形成用于多个接头的一组驱动信号。

2.根据权利要求1所述的方法,该方法包括根据相应的驱动信号驱动每个所述驱动接头。

3.根据权利要求2所述的方法,其中,每个所述驱动接头设置有相应的电动机用于驱动所述接头处的运动,每个驱动信号被施加至相应的电动机。

4.根据权利要求2或3所述的方法,该方法包括重复地执行第二个测量步骤、形成步骤和驱动步骤。

5.根据权利要求4所述的方法,其中,形成一组驱动信号的步骤在比形成目标信号的步骤更高的频率下执行。

6.根据前述权利要求中任一项所述的方法,其中,对于每个驱动接头根据相应质量、减震器以及弹簧系数来执行所述阻抗控制算法。

7.根据前述权利要求中任一项所述的方法,其中,所述运动要求信号代表用于每个所述驱动接头的期望构造。

8.根据权利要求7所述的方法,该方法包括:

接收代表所述机械系统的一部分的期望物理位置的主要运动要求信号;

执行逆向运动学计算以确定每个驱动接头的、要将所述机械系统的所述一部分定位在所述期望物理位置处的构造;以及提供这些构造作为所述运动要求信号。

9.根据权利要求6或者从属于权利要求6的权利要求7或8所述的方法,该方法包括:接收代表用于第一坐标空间中的物理系统的期望阻抗特性的数据;以及对于每个驱动接头将该数据转换为相应的质量、减震器以及弹簧系数。

10.根据权利要求9所述的方法,其中,所述第一坐标空间是非笛卡尔坐标空间。

11.根据权利要求9所述的方法,其中,所述第一坐标空间是拓扑空间。

12.根据权利要求9所述的方法,其中,所述第一坐标空间是向量空间。

13.根据前述权利要求中任一项所述的方法,其中,在接头空间中实施所述阻抗控制算法。

14.根据权利要求1至6中任一项所述的方法,其中,所述运动要求信号代表所述机械系统的一部分的期望物理位置。

15.根据权利要求14所述的方法,其中,执行阻抗控制算法的步骤包括:执行所述阻抗控制算法以确定所述机械系统的所述一部分的目标物理位置;

执行逆向运动学计算以确定每个驱动接头的、适合于将所述机械系统的所述一部分定位在所述目标物理位置处的构造;以及形成所述目标信号,以指示那些构造作为用于所述驱动接头的所述目标构造。

16.根据权利要求15所述的方法,该方法包括:指定用于指示所述机械系统的期望构造的额外信息;并且执行逆向运动学计算的步骤被执行,以便确定每个驱动接头的、适合于将所述机械系统的所述一部分定位在所述目标物理位置处且满足由所述额外信息指定的所述期望构造的构造。

17.根据前述权利要求中任一项所述的方法,该方法包括:将所述驱动接头周围或者所述驱动接头处的测量转矩或者力转换到与所述测量转矩或者力被测量的空间不同的第一坐标空间,以便形成所述负荷信号。

18.根据权利要求17所述的方法,其中,所述第一坐标空间是非笛卡尔空间。

19.根据权利要求17所述的方法,其中,所述第一坐标空间是拓扑空间。

20.根据权利要求17所述的方法,其中,所述第一坐标空间是向量空间。

21.根据前述权利要求中任一项所述的方法,其中,所述机械系统是机器人操纵器。

22.根据前述权利要求中任一项所述的方法,其中,所述机械系统是手术机器人。

23.根据前述权利要求中任一项所述的方法,其中,所述机械系统是主从式操纵器,并且所述运动要求信号由主控制器形成。

24.一种用于机械系统的控制器,所述控制器被构造为执行根据前述权利要求中任一项所述的方法。

25.一种机器人操纵器,所述机器人操纵器具有通过多个驱动接头互连的多个部件,以及被构造为通过根据权利要求1至23中任一项所述的方法来控制所述操纵器的控制器。

26.一种非瞬时性计算机可读存储介质,其具有存储在其上的计算机可读指令,当在计算机系统执行时,所述计算机可读指令引起所述计算机系统执行根据权利要求1至23中任一项所述的方法。

说明书全文

机器人控制

技术领域

[0001] 本发明涉及一种用于诸如机器人臂的机器的驱动系统的控制。

背景技术

[0002] 典型机器人操纵器包括通过接头联接在一起的一系列刚性元件。所述元件可以串联接合以形成臂。接头能够被驱动以便引起刚性元件的相对运动。刚性元件可以起源于基座并且终止于末端执行器。因而接头处的运动能够用于将末端执行器定位在期望位置。每个接头可以提供旋转运动或者线性运动。接头可以由任何合适的装置驱动,例如电动机或者液压致动器。
[0003] 当机器人在操作中,需要引起末端执行器移动至一些期望位置。例如,机器人需要使用末端执行器拾起物体。这将需要末端执行器移动至物体所在的地方。为了实现此,需要接头的一些运动组合。计算这些运动是机器人的控制系统的作用。
[0004] 通常,机器人设置有位置传感器,每个位置传感器感测相应的一个接头的构造。该位置信息供给至控制系统。
[0005] 用于控制系统的公知策略如下:
[0006] 1、接收指示末端执行器的期望位置的信息。
[0007] 2、确定机器人的接头的一组目标构造,这将导致末端执行器处于该位置。这公知为逆向运动学。
[0008] 3、接收指示每个接头在机器人中的当前构造的信息,比较这些当前构造与目标构造,计算每个接头处所需的一组转矩或力以降低相应接头的当前位置与目标位置之间的误差。
[0009] 4、发送驱动信号至机器人中的致动器以在相应接头处施加转矩或者力。
[0010] 重复执行这一系列步骤,使得一段时间之后机器人的运动符合目标构造。与指示末端执行器的位置相反或者另外,输入至系统的信息将指示机器人的另一部分的期望位置。例如,如果需要机器人臂来避免靠近臂的中间点的外部障碍物,这可以适用。
[0011] 替代方式公知为阻抗控制。阻抗控制涉及调整(i)转矩/力和(ii)位置、速率以及加速度之间的关系。
[0012] 在特定应用中,控制末端执行器的阻抗比仅控制位置更有利。例如,在末端执行器需要通过小孔口(例如端口)插入长杆(例如内视镜)的应用中,末端执行器具有有限硬度是有利的,使得能够适应端口和内视镜之间的稍微不对准。
[0013] 图1图示了执行用于机器人操纵器的阻抗控制的一种方式。在该方法中,以下输入供给至阻抗控制块:
[0014] -来自于命令源的pd(期望位置向量)、Rd(期望旋转矩阵)、vd(期望速率)和v’d(期望加速度);
[0015] -pc(顺应体系中的位置向量)、Rc(顺应体系中的旋转矩阵)和vc(顺应体系中的速率),它们通过直接运动学块中的正向运动学得到;以及
[0016] -hc(测量的末端执行器转矩/力)。
[0017] 阻抗控制块基于这些输入来执行阻抗控制模型以在接头空间中生成要求加速度(α)。要求加速度表示为向量 其中,qd是命令的接头运动q。然后这些被逆运动学块调整以生成一组用以驱动机器人操纵器的驱动转矩或者力τ。应理解的是,在该方法中在末端执行器处合成阻抗。这具有的劣势为,应该测量在末端执行器处的接触转矩/力(hc),在一些情形下这是困难的或者甚至不可能的:例如一些手术机器人应用,并且涉及额外成本和潜在不可靠性。该方法的另一问题是,该方法依赖模型化逆向动力学。这要求持续不断计算操纵器的加速度,并且使控制性能对于机器人操纵器的模型的准确度敏感,在其质量、惯性、损失等数据方面其是不精确的。另一问题为,阻抗控制方法对于模型范围之外的外部干扰敏感,诸如驱动摩擦以及不期望的物理障碍。这些将导致定位追踪误差。
[0018] 图2示出了执行阻抗控制的第二方式。在该方法中,提供了一种内部运动控制环路。该方案的目的是使操纵器坚硬,使得当通过阻抗控制块计算时其如实地追踪顺应体系中的要求位置pc和旋转Rc。要求值pd、Rd、vd以及v’d与测量的hc一起提供至阻抗控制块。阻抗控制块对于vdc和v’dc通过求解二阶动态方程合成末端执行器的期望机械阻抗:
[0019]
[0020] 在该方程中,KM代表弹簧常数的矩阵,vdc代表要求参考坐标系和顺应体系之间的位置的差。顺应体系中的期望位置、旋转、速度以及加速度传递至位置和方位控制块。该块是控制器,其基于从阻抗控制块确定的值和通过直接运动学确定的值之间的差设定系统的追踪性能。位置和方位控制块的输出是一组输出转矩或者力α的设定,代表接头空间中的要求加速度,它们如在图1的方案一样被处理。图2的方案可以有助于求解图1的方案中的位置追踪问题,但是其具有多个其他劣势。第一,在末端执行器的笛卡尔参考坐标系(hc代表沿x、y、z的力以及沿三个旋转维度的转矩)中计算阻抗。在一些应用中,期望使用其他坐标系统。第二,图2的系统将逆运动学问题带入位置和方位的控制中。这是有问题的,由于典型地逆运动学问题被认为难以求解。关于此的一个原因是能够有多个方案(即,能够有多组接头角度,这将给予特定末端执行器位置)。另一原因是操纵器的特定姿势会变得单一,意味着不能够沿所有方向以有限接头速率进行执行器的后续移动。由于这些原因,将逆向运动学方案嵌入反馈环路内使得其显著更困难,以整体上使算法的任何潜在失败情形生效。最终,正如利用图1的系统,提议的是,将在末端执行器处测量转矩/力,正如以上讨论的,这会是不切实际的,会引入额外成本和不可靠性。
[0021] 需要一种用于机械系统的改进控制系统,诸如机器人操纵器。

发明内容

[0022] 根据本发明,提供了一种用于控制机械系统的方法,机械系统具有通过多个驱动接头互连的多个部件,该方法包括:测量驱动接头周围或驱动接头处的转矩或者力,并且形成代表测量的转矩或者力的负荷信号;接收代表系统的期望状态的运动要求信号;根据运动要求信号和负荷信号执行阻抗控制算法,以形成指示用于每个驱动接头的目标构造的目标信号;测量每个驱动接头的构造,并且形成代表测量构造的状态信号;以及通过比较由目标信号指示的该接头的目标构造与由状态信号指示的该接头的测量构造,为每个接头形成用于该接头的一组驱动信号。
[0023] 该方法可以包括根据相应的驱动信号驱动每个驱动接头。每个驱动接头可以设置有相应的电动机,用于接头处的驱动运动。每个驱动信号可以施加至相应的电动机。
[0024] 该方法可以包括重复执行第二测量步骤、形成步骤和驱动步骤。形成一组驱动信号的步骤可以在比形成目标信号的步骤更高频率下执行。
[0025] 阻抗控制算法可以针对每个驱动接头根据相应的质量、减震器以及弹簧系数来实施。
[0026] 运动要求信号可以代表用于每个驱动接头的期望构造。
[0027] 该方法可以包括:接收代表机械系统的一部分的期望物理位置的主要运动要求信号;执行逆向运动学计算以确定要将机械系统的一部分定位在期望物理位置处的用于每个驱动接头的构造;以及将这些构造设置为运动要求信号。
[0028] 该方法可以包括:接收代表用于在第一坐标空间中的物理系统的期望阻抗特性的数据;以及将该数据转换为针对每个驱动接头的相应的质量、减震器以及弹簧系数。
[0029] 第一坐标空间可以是笛卡尔、非笛卡尔、拓扑空间或者向量空间。
[0030] 阻抗控制算法可以在接头空间中实施。
[0031] 运动要求信号可以代表机械系统的一部分的期望物理位置。
[0032] 执行阻抗控制算法的所述步骤可以包括:执行阻抗控制算法以确定机械系统的一部分的目标物理位置;执行逆向运动学计算以确定适合于将机械系统的一部分定位在目标物理位置处的用于每个驱动接头的构造;以及将目标信号形成为指示这些构造,作为用于驱动接头的目标构造。
[0033] 该方法可以包括:指定指示机械系统的期望构造的额外信息。执行逆向运动学计算的步骤被执行以便确定适合于将机械系统的一部分定位在目标物理位置处且满足由额外信息指定的期望构造的用于每个驱动接头的构造。
[0034] 该方法可以包括将驱动接头周围或者驱动接头处的测量转矩或者力转换到与它们被测量的空间不同的第一坐标空间,以便形成负荷信号。
[0035] 第一坐标空间可以是笛卡尔空间、非笛卡尔空间、拓扑空间或者向量空间。
[0036] 机械系统可以是机器人操纵器。
[0037] 机械系统可以是手术机器人。手术机器人的末端执行器可以是手术工具。
[0038] 机械系统可以是主从式操纵器。运动要求信号可以由主控制器形成。
[0039] 根据本发明的第二方案提供了一种用于机械系统的控制器,控制器构造为执行如上所述的方法。
[0040] 根据本发明的第三方案提供了一种机器人操纵器,其具有通过多个驱动接头互连的多个部件以及构造为用于通过如上所述的方法控制操纵器的控制器。
[0041] 根据本发明的第四方案提供了一种非瞬时性计算机可读存储介质,其具有存储在其上的计算机可读指令,当在计算机系统执行时,引起计算机系统执行如上所述的方法。
[0042] 所述部分可以是末端执行器或者末端执行器的近侧部分。该部分的期望位置可以通过限定该部分的唯一位置或者该部分的允许轨迹而限定。
[0043] 所述部件可以是刚性和/或细长部件。接头可以是旋转和/或线性接头。
[0044] 具体说明
[0045] 现在将参考附图根据例子描述本发明。
[0046] 在附图中:
[0047] 图1是现有技术阻抗控制算法的方框图。
[0048] 图2是另一现有技术阻抗控制算法的方框图。
[0049] 图3图示了示例机器人臂。
[0050] 图4示出了用于控制单元的构造。
[0051] 图5是第一阻抗控制算法(“A”)的方框图。
[0052] 图6是第二阻抗控制算法(“B”)的方框图。
[0053] 图3示出了机器人操纵器臂的例子。该臂从基座1延伸,基座1例如能够固定在手推车上的位置或者可以是可移动的。臂由一组刚性元件2-10组成,终止于末端执行器11。刚性臂元件通过可重构接头12-19串联联接在一起。在该例子中,接头都是绕转接头,但是它们能够被提供而用于线性运动。每个接头设置有用于感测接头的位置构造的相应位置传感器20,以及用于感测围绕接头的转矩的转矩传感器21。来自这些传感器的数据供给至控制单元22。电动机23设置在每个接头处以在通过接头相互连接的两个臂元件的接头处驱动相对旋转。为了清楚起见,仅一些传感器20、21和电动机23示出在图3。电动机由来自控制单元22的信号驱动。控制单元能够是计算机。控制单元从命令设备24接收输入。该输入代表刺激或者要求用于使操纵器以特定方式移动。命令设备例如能够感测用户的物理命令输入,通过该物理命令输入,用户能够用信号通知臂的期望运动。命令设备能够包括一个或多个操纵杆或者其他物理地可移动的控制器,其能够包括传感器,用于非接触地感测用户的运动(例如使用示出给用户的视频流的分析),或者其能够是根据存储程序自动命令臂的运动的计算机。这种命令计算机能够是在功能上和/或物理地集成控制计算机。命令设备能够与控制单元同地协作或者远离其。控制单元能够与机器人操纵器同地协作或者远离其。通信链节设置在臂和控制单元之间以及控制单元和命令设备之间。这些将独立于有线和/或无线链节。关于此类型臂的进一步信息公开于WO2015/132549。
[0054] 控制单元22将典型地是计算机;位于单个壳体中或者分布在多个物理单元之间及潜在地在不同位置之间。图4示出了用于控制单元的示例构造。在该例子中,控制单元包括内存40,其非瞬时地存储通过处理器41可执行的程序代码。暂时内存42(例如RAM)可获得而由处理器使用。处理器联接至界面43和44。接口43与传感器以及臂的电动机相接。接口44与命令设备相接。存储在内存40中的非瞬时程序代码布置成引起处理器41执行需要执行期望控制算法的功能,例如下文进一步描述的算法A和B中的一个。可替换地,控制单元22的一些或者所有功能能够实施为专用硬件。
[0055] 下文将描述两个控制算法A和B。在每个算法中,算出用于臂的接头的一组期望构造(qd)。qd能够是向量,指定用于臂的每个接头的构造。根据每个接头的运动,构造可以是倾斜和/或线性构造。当通过臂的位置传感器20感测时,比较期望构造与当前构造。根据每个接头的期望构造与其当前构造之间的差,接头空间位置控制器算出当施加在接头周围时将趋于朝向期望构造驱动接头的转矩。然后根据相应算出的转矩驱动每个接头,优选地以便围绕接头施加大致该算出的转矩。
[0056] 阻抗模型用来计算期望接头构造。阻抗模型具有来自外部刺激的输入以及设计限制,设计限制能够被指定以便实现期望阻抗。外部刺激能够是用于末端执行器或者臂的任何部分的预编程轨迹,或者能够通过直接用户输入被给定,正如在主从式操纵器的情形下。
[0057] 现在将参考图5描述第一控制算法A。
[0058] 第一控制算法包括以下功能块:参考位置逆向运动学块50、接头空间阻抗参数计算块51、可以求解常微分方程(ODE)的接头空间阻抗控制求解块52、以及接头空间位置控制器块53。图5还示出了操纵器以及作为块54的其环境。功能块50至53可以实施为硬件和/或软件的任何合适的组合。
[0059] 在以下说明中,术语p代表在合适的参考坐标系中的位置,其能够是但不是必须是笛卡尔参考坐标系。术语q代表用于图3的臂中的接头12-19的一组接头角度。在一个或多个接头允许线性运动的其他例子中,q能够代表接头的线性构造。
[0060] 一般而言,第一控制算法以如下方式操作。
[0061] -将参考位置pref输入至参考位置逆向运动学块50,参考位置pref代表在其已经被外生力干扰之前末端执行器11的基座位置。参考位置逆向运动学块50执行逆向运动学以得出对应于pref的一组参考接头角度qref。
[0062] -接头空间阻抗参数计算块51计算一组矩阵Mq(q)、Dq(q)和Kq(q),它们代表分别用于操纵器的期望阻抗行为的适当的质量、减震器以及弹簧系数(spring term)。
[0063] -将qref、Mq(q)、Dq(q)和Kq(q)与由臂接头的转矩传感器21感测的转矩F一起输入至接头空间阻抗控制求解块52。该块根据描述基于阻抗的控制系统的关系来处理输入,以形成qd,qd是一组要求接头角度。
[0064] -将qd与q一起输入至接头空间位置控制器块53,q代表来自于位置传感器20的接头的测量位置。根据电动机作用的相应接头的期望构造以及实际构造之间的差,接头空间位置控制器块53形成输出到臂的电动机23的一组驱动输出。每个驱动输出代表相应的电动机的命令转矩。驱动输出被传递至臂的电动机23以引起它们向臂的接头施加对应转矩/力。接头空间位置控制器能够是比例积分微分控制器,或者另一线性或者非线性控制规律(例如,比例积分微分(PID)、具有逆向动力学的PID、具有反馈线性化的PID、随机控制规律诸如Kalman过滤器、LQG控制、H-2或者H-无限控制规律、模糊逻辑控制规律、模型预测控制(MPC)规律又称动态矩阵控制规律)。
[0065] 下文为这如何能够在数学上实施的一个例子。
[0066] 选择用于Mq、Dq以及Kq的值以设定期望质量、减震器以及弹簧系数。方便的方法是选择期望弹簧常数K,然后选择M和D以使系统在所选择的频率下处于临界阻尼。
[0067] 接头空间阻抗控制求解器能够为了q求解以下方程:
[0068]
[0069] 其中,指代qref,τm代表在每个接头处的一组测量的转矩。为了求解此,可以使用标准方法,例如:
[0070]
[0071] 这种方程能够利用状态变量 和 使用时间步长法求解。
[0072] 在一般笛卡尔情形下,Mq和Dq能够示出为:
[0073] Mg=J(q)TMxJ(q)
[0074]
[0075] 其中,J指示雅克比行列式, 更好地计算为
[0076] 在一些情形下,例如当机械系统是冗余序列机器人操纵器时,Mq(q)可能不是满秩矩阵。在该情形下能够遵循多个方法。
[0077] -一个方法是使用ODE求解器算法,其不需要计算Mq(q)-1(例如Runge-Kutta方法或者Bogacki-Shampine方法)。
[0078] -另一方法是选择矩阵T,使得TTMq(q)是可逆的:例如利用T类似于单位矩阵但时移除具体列;然后为了求解,不是用于q而是用于r,其中,r被限定,使得Tr=q。该方法导致r相对于q具有降低的尺寸。该方法能够是有利的,当被控制的系统是冗余操纵器,当其期望用于阻抗限制,仅施加至接头角度q的特定子空间。此外T能够部是恒定,而是可以基于q参数化。在该情况下,在T的零空间中的q的子空间能够直接分派。
[0079] 应该注意的是,在操作中Mq(q)、Dq(q)和Kq(q)不是必须恒定,而是需要被周期性更新。另一方面,Mx、Dq以及Kq可以明显地选择为恒定,虽然它们也能够随时间改变。
[0080] 在该第一控制算法A中,能够通过确保要控制的尺寸在TT零空间中,或者通过指定用于这些尺寸的适当僵硬阻抗,来实现位置控制。
[0081] 如果在接头空间中供给参考位置,参考位置逆向运动学块能够省略。
[0082] 阻抗参数能够供给在任何合适的空间中,并且转换成接头空间。如果它们在接头空间中供给,于是能够省略接头空间阻抗参数计算块51。
[0083] 为了图示该第一控制算法,考虑图3的机器人臂的接头14。由于臂的冗余性质,对于臂的许多姿势来说,能够自由调节接头14,同时保持臂的终端部分10在世界参考体系中静止。当接头14处存在旋转时,臂5的下一个最远侧部分将沿着路径移动。假设设计者希望指定用于沿着该路径的运动的机械阻抗。采用的标志为,描述臂的行为的矩阵处理臂的接头,进而开始于最近侧接头12,并且注意,接头14是自臂的近侧端部起的第三接头,T能够设定为:
[0084]
[0085] 这将导致Mq、Dq和Kq都是标量。转矩给定为TTτm,其也是标量。因此,ODE可以被求解以给定用于接头14的分量qd。该分量qd然后能够与从参考逆向运动学算出的其他qd分量结合,并且得到的完整的接头位置向量能够作为一组点而被供给到接头空间位置控制器53。
[0086] 现在将参考图6描述第二控制算法B。
[0087] 第二控制算法包括以下功能块:阻抗控制块60、逆向运动学块61、额外输入块62、接头空间位置控制器块63以及转矩转化块64。图6还示出了操纵器以及其环境,作为块65。功能块60至64可以实施为硬件和/或软件的任何合适的组合。
[0088] 一般而言,第二控制算法以以下方式操作。
[0089] -参考位置pref,其代表在其已经通过外生力干扰之前末端执行器11的基座位置,与矩阵Mq(q)、Dq(q)和Kq(q)和FZ一起输入至阻抗控制块60,其代表在转化至相同坐标系统的接头上测量的转矩/力,正如pref表达的。阻抗控制块60执行阻抗控制方案以形成用于末端执行器的期望位置pd。
[0090] -额外位置输入可以从额外输入块62设置。当一个或多个接头在位置控制下不是阻抗控制下操作时这可以使用。
[0091] -逆向运动学块61执行逆向运动学以得到一组期望接头角度qd,它们对应于供给至块61的完整的一组pd值。当被操纵器采用时,这些接头角度将导致末端执行器处于期望位置。
[0092] -将qd与q一起输入至接头空间位置控制器块63,q代表来自于位置传感器20的接头的测量位置。根据电动机作用的相应接头的期望构造与实际构造之间的差,接头空间位置控制器块63形成输出到臂的电动机23的一组驱动输出。每个驱动输出代表对相应的电动机的命令转矩。驱动输出传递至臂的电动机23以引起它们将对应转矩/力施加至臂的接头。接头空间位置控制器能够是比例积分微分控制器,或者上文列出的任何可替换方法。
[0093] -转矩转化块64接收由传感器21测量的臂上的转矩/力,将它们转化为向量FZ,FZ代T表相同坐标系统中的信息,如用于pref和pd的。这可以根据方程F=J(q) FZ完成,其中,J是雅克比行列式。应该注意的是,从F算出FZ可能无法始终是唯一地(即, 可能不存在)。于是逻辑能够设置成从有效候选中选择FZ。
[0094] 在第一控制算法A中,阻抗参数能够供给在不同于实施阻抗控制算法的坐标系统中。在第二控制算法B中,限定pref和阻抗矩阵的坐标系统能够不同于测量值F的坐标系统。方便地,pref和阻抗矩阵能够限定在指定阻抗本身的坐标系统中。在每个情况下,所述坐标系统可以是公知坐标系统(例如球形、四方平面、椭圆柱形、极坐标、类似球形、垂心的、喇叭口形、谐波或者高斯)或者可以是由向量的参数化或者拓扑空间限定的任意坐标系统)。坐标系统可以具有适合于需要代表的数据的任何数量维度。在一个例子中,坐标系统能够是笛卡尔空间,其限定在三个线性轴线上,三个线性轴线的方位固定在空间中。在另一例子中,坐标系统能够是非笛卡尔系统,其由参数限定,参数中没有一个参数代表轴线上的线性值,轴线的方位在空间中是固定的。通过选择适当的坐标系统至所需阻抗特性,如果期望,阻抗定义矩阵Mp、Dp、Kp能够保持恒定。这能够降低执行算法所需的计算量。例如,如果阻抗合成在球体的表面上,Mp、Dp、Kp能够是2x2矩阵,阻抗控制能够在两个自由度中限定运动,而其他四个自由度能够直接被控制,例如从块61直接被控制。
[0095] 阻抗控制块60可以通过求解用于机械阻抗的ODE,然后通过设定位置要求至逆向运动学,来算出要求位置pd。
[0096] 在一些情形下,方便的是,阻抗矩阵和pref表示在球形坐标中。当使用球形坐标时,能够注意到以下内容:
[0097] -有效的是,逆向运动学块62部分地操作在球形坐标中以及部分地操作在另一方便坐标系统(例如笛卡尔系统)中。实现此的一种实践方式可以是指定用于极性角度和方位角(θ,)的阻抗,但是直接指定球体半径(ρ)和旋转末端执行器位置。逆向运动学块62能够简单从指定球形坐标转换回到其他系统。在球形至笛卡尔转换的情形下,能够使用标准关系
[0098] -块64中执行的转矩转化能够以两步骤方式操作。首先,其能够通过合适的装置从表示在接头空间中的转矩转换为笛卡尔转矩。图3示出的示例操纵器具有八个接头,每个具有转矩传感器。因此,J(q)T的伪逆能够用以从F确定FZ。FZx、FZy及FZz表示作用力的x、y及z分量,作用在球形坐标中的力能够使用用于球形坐标的公知单位向量表示为如下:
[0099]
[0100]
[0101] -使用球形坐标不期望用于大的极性角度值,这是由于当极性角度趋向于90度时,沿着表面的用于方位角的小改变的距离趋于零。
[0102] 在这两个算法A和B中,具有q反馈的块53/63和54/65至块53的环路可以与qd的生成不同步地执行。例如,该反馈环路可以以比qd的生成更高的频率执行。
[0103] 控制单元22能够执行第一和第二控制算法A、B中的一个或这两者。控制单元22可以构造为以便根据操纵器的操作来选择是应用第一算法还是第二算法。当所需阻抗行为设定靠近末端执行器的参考坐标系时第一控制算法尤其方便而使用,例如当阻抗能够易于表示在笛卡尔x、y、z坐标以及旋转自由度时。当所需阻抗行为不紧密匹配末端执行器的参考坐标系时第二控制算法尤其方便而使用,例如当阻抗限定为用于末端执行器的在任意N维坐标系统中的移动,诸如表面球体。会影响选择算法的考虑包括可检测性、计算复杂性以及陈述的清楚性。
[0104] 在算法A和B中的每个中,从转矩/力传感器20、21接收的操纵器的接头处的转矩/力信号F可以在使用在相应算法的其他部分之前被调节。例如,它们可以通过根据臂的当前姿势减去模型化力被调节,以大致抵消来自测量的力/转矩的重力和/或惯性转矩/力的影响,它们可以被过滤以移除噪声和/或它们可以被处理以移除测量偏差。
[0105] 根据上述算法A和B的阻抗控制能够使用在控制系统中,用于驱动关节连接机械系统,其中,需要机械系统与环境以控制方式相互作用。阻抗能够限定为提供任何所需物理阻抗行为。例如,对于机器人操纵器的末端执行器有利的是施加弹性至与其相互作用的用户。在该情况下,末端执行器位置的期望行为是这样的位置,该位置与在末端执行器处施加的外生力线性地成比例。这能够根据阻抗矩阵限定。总之,阻抗矩阵可以允许限定任意机械阻抗(其是转矩/力和位置之间的任意关系)。阻抗可以限定在任何合适的向量空间中,具有任何合适数量的尺寸。阻抗可以限定为用于沿着机器人操纵器的任何位置。
[0106] 在算法A和B中,接头空间位置控制器块可以可选地执行逆向动力学。
[0107] 将注意的是,如上所述,算法A和B不需要计算以尝试补偿实际施加的转矩/力的不确定。相反,算法根据测量的接头构造以及测量的转矩/力形成它们的输出。这能够比一些先前方法更简单以及更精确。
[0108] 在算法A和B中,逆向运动学问题保持独立于位置控制环路。其一个潜在优势为,臂位置控制在接头空间中的问题能够独立于逆向运动学问题,并且被求解,独立于逆运动学问题被优化。另一潜在优势为,逆向运动学方法能够独立开发。在冗余序列号操纵器(诸如图3的)的情形下,冗余能够求解而不影响内部位置控制环路。这能够改善操纵器的安全性和控制准确度。
[0109] 如上所述,阻抗能够限定在任意坐标系统中。然后在一个或多个自由度中,操纵器可以在阻抗控制下操作,尽管在剩余自由度中,操纵器可以在位置控制下操作。
[0110] 不同于一些现有技术方法,虽然能够使用这种传感器,但是算法A和B不需要在末端执行器处的专用转矩/力传感器。
[0111] 当接头被高传动比驱动时算法A和B尤其适合于使用。高传动比通常有利,这是由于它们能够输送良好的最高功率/体积比。在直接由电动机驱动的接头中,通常可以通过检查通过其驱动电动机的电流确定通过接头输送的转矩/力。这是因为大多数电动机具有良好限定的电流-转矩关系。但是,由于在高传动比(例如1:100或更大)下驱动链摩擦损失,难以从高比率驱动中电动机侧转矩的测量估计接头输出转矩。相反,转矩传感器能够并入最终输出轴承处或者在最终输出轴承中或者每个接头的联结中。这能够避免需要从电动机侧的量值来估计接头转矩。此外,转矩传感器在每个接头内的存在能够使得不需要用于末端执行器处的力/转矩传感器。
[0112] 机器人或者操纵器能够用于任何合适的目的。例如,其能够是工业机器人或者手术机器人。在手术机器人的情形下,末端执行器能够是手术工具诸如外科手术刀、手术切割器、手术钳或者烧灼器。
[0113] 接头能够由能够是旋转或者线性的电动机驱动,或者通过其他装置诸如液压或者气压致动器驱动。这些将由相同控制算法驱动。
[0114] 在说明书中,为了易于解释,以上算法A和B已经划分为功能块。实践中,两个或多个这些块能够在建筑学上组合。
[0115] 如上所述,算法A和B能够施加至机器人或者操纵器任何合适的形式。它们不限于图3示出的臂类型。该方法能够用以控制操纵器,其构造为除了具有臂的方式:例如机加工台。该方法能够用以控制其他机械设备,具有能够驱动以相对于彼此移动的互连部分,诸如吊车或者挖掘机臂、车辆悬架系统以及可移动的飞机飞行表面元件。
[0116] 此处,申请人孤立地公开此处描述的每个单独特征以及两个或多个这种特征的任何组合,在这种程度上,使得本领域的技术人员能够基于本说明书作为整体执行这种特征或者组合,而不考虑是否这种特征或者特征的组合求解此处公开的任何问题,而不限制权利要求的范围。申请人指出,本发明的方案可以包括任何这种各特征或者特征的组合。鉴于前述说明书,对本领域的技术人员显而易见的是,可以在本发明的范围内进行各种修改。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用