会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 纳米技术 / 纳米材料 / 纳米粒子 / 增强粘膜渗透或减少炎症的纳米粒子

增强粘膜渗透或减少炎症的纳米粒子

阅读:1055发布:2020-09-02

IPRDB可以提供增强粘膜渗透或减少炎症的纳米粒子专利检索,专利查询,专利分析的服务。并且由一或多种核心聚合物、一或多种表面改变材料以及一或多种低分子量乳化剂的乳液形成的纳米粒子已经开发。所述粒子通过以下方式制得:将所述一或多种核心聚合物溶解于有机溶剂中,将所述一或多种核心聚合物的溶液加入到所述乳化剂的水溶液或悬浮液中以形成乳液,且接着将所述乳液加入到所述乳化剂的第二溶液或悬浮液中以实现所述纳米粒子的形成。在优选实施例中,所述乳化剂的分子量低于1500、1300、1200、1000、800、600或500amu。优选乳化剂包括胆酸钠盐、磺基琥珀酸钠二辛酯、溴化十六烷基三甲基铵、皂苷、20、80以及糖酯。所述表面改变材料是以一定的量存在,所述量在馈入所述一或多种乳化剂时有效地使所述粒子的表面电荷中性或基本上中性。所述乳化剂具有至少约50%、优选地至少55%、60%、65%、70%、75%、80%、85%、90%或95%的乳化能力。,下面是增强粘膜渗透或减少炎症的纳米粒子专利的具体信息内容。

1.一种纳米粒子,其由一或多种核心聚合物、一或多种治疗剂、防治剂或诊断剂、一或多种包含聚乙二醇的表面改变材料以及一或多种低分子量乳化剂的乳液在搅拌足够时间下形成,其中所述搅拌步骤允许溶剂蒸发并使得所述表面改变材料在所述纳米粒子表面上扩散和装配,其中所述一或多种低分子量乳化剂的分子量低于1500amu;

其中当所述纳米粒子分散于pH值为7的10mM氯化钠溶液中时,所述纳米粒子的ξ-电位在10mV与-10mV之间;

其中所述包含聚乙二醇的表面改变材料具有的表面密度/完全表面覆盖率[Γ/Γ*]为大于3,并采用延伸的刷子配置;以及所述纳米粒子以比相同纳米粒子在水中慢不到10倍的有效速度渗透子宫颈阴道粘液。

2.如权利要求1所述的纳米粒子,其中所述包含聚乙二醇的表面改变材料是聚环氧乙烷嵌段共聚物。

3.如权利要求1所述的纳米粒子,其中所述核心聚合物和所述表面改变材料是不同的组分。

4.如权利要求1所述的纳米粒子,其中所述表面改变材料共价结合于所述核心聚合物。

5.如权利要求3所述的纳米粒子,其中所述核心聚合物是含有一或多个所述表面改变材料的嵌段的嵌段共聚物。

6.如权利要求4所述的纳米粒子,其中所述核心聚合物包含共价结合于所述核心聚合物的一端处的所述表面改变材料的单一嵌段。

7.如权利要求1所述的纳米粒子,其中所述核心聚合物进一步包含未共价结合于所述表面改变材料的一或多种聚合物。

8.如权利要求7所述的纳米粒子,其中未共价结合于所述表面改变材料的所述一或多种聚合物与所述一或多种核心聚合物具有相同的化学组成。

9.如权利要求1所述的纳米粒子,其中所述表面改变材料是聚乙二醇。

10.如权利要求9所述的纳米粒子,其中所述聚乙二醇的分子量是1kD到10kD。

11.如权利要求9所述的纳米粒子,其中所述聚乙二醇的分子量是1kD到5kD。

12.如权利要求9所述的纳米粒子,其中所述聚乙二醇的分子量是5kD。

13.如权利要求9或10所述的纳米粒子,其中聚乙二醇的密度在利用1H NMR测量时是0.1到100条链/100平方纳米。

14.如权利要求9或10所述的纳米粒子,其中聚乙二醇的密度在利用1H NMR测量时是1到

50条链/100平方纳米。

15.如权利要求9所述的纳米粒子,其中聚乙二醇的密度在利用1H NMR测量时是5到50条链/100平方纳米。

16.如权利要求9所述的纳米粒子,其中聚乙二醇的密度在利用1H NMR测量时是5到25条链/100平方纳米。

17.如权利要求1所述的纳米粒子,其中所述一或多种乳化剂的分子量低于1300amu。

18.如权利要求1所述的纳米粒子,其中所述一或多种乳化剂的分子量低于500amu。

19.如权利要求17所述的纳米粒子,其中所述一或多种乳化剂是不带电的、带正电荷的、带负电荷的或其组合。

20.如权利要求19所述的纳米粒子,其中所述一或多种乳化剂是选自由以下组成的群组:胆酸钠盐、磺基琥珀酸钠二辛酯、溴化十六烷基三甲基铵、皂苷、TWEEN 20、TWEEN 80以及糖酯。

21.如权利要求1所述的纳米粒子,其中所述一或多种乳化剂具有至少50%的乳化能力。

22.一种医药组合物,其包含如权利要求1所述的纳米粒子和一或多种医药学上可接受的载剂。

23.有效量的如权利要求1所述的纳米粒子在制备用于向有需要的患者投与一或多种治疗剂、防治剂和/或诊断剂的药物中的应用。

24.如权利要求23所述的应用,其中所述粒子经肠内投与。

25.如权利要求23所述的应用,其中所述纳米粒子经肠胃外投与。

26.如权利要求23所述的应用,其中所述纳米粒子通过静脉内、皮下、肌肉内或腹膜内注射投与。

27.如权利要求25所述的应用,其中所述纳米粒子经结膜下投与。

28.如权利要求23所述的应用,其中所述纳米粒子经局部投与。

29.如权利要求28所述的应用,其中所述纳米粒子被局部施用到眼睛或其区室中。

30.如权利要求28所述的应用,其中所述纳米粒子被投与肺气道,经鼻内、阴道内、直肠或经颊投与。

31.一种制造如权利要求1所述的纳米粒子的方法,所述方法包含将一或多种核心聚合物溶解于有机溶剂中,将所述一或多种核心聚合物的溶液加入到乳化剂的水溶液或悬浮液中以形成乳液,其中所述一或多种包含聚乙二醇的表面改变材料及一或多种治疗剂、防治剂或诊断剂溶解于所述有机溶剂或所述水溶液中;以及将所述乳液在搅拌足够时间下加入到所述乳化剂的第二溶液或悬浮液中以实现所述纳米粒子的形成,其中所述搅拌步骤允许有机溶剂蒸发并使得所述表面改变材料在所述纳米粒子表面上扩散和装配。

32.一种纳米粒子,其由如权利要求31所述的方法制备。

说明书全文

增强粘膜渗透或减少炎症的纳米粒子

技术领域

[0001] 本发明处于以下领域内:纳米粒子,尤其是快速渗透粘液的纳米粒子,如人类粘液,以及制造和使用其的方法。

背景技术

[0002] 经由生物可降解纳米粒子局部递送治疗剂通常提供优于全身药物投与的优势,包括减小的全身副作用和目标部位处受控的药物水平。然而,粘膜表面处受控的药物递送因保护性粘液层的存在而受到限制。
[0003] 粘液是包覆所有未被皮肤覆盖的暴露上皮表面(如呼吸道、胃肠道、鼻咽道以及女性生殖道和眼表面)的粘弹性凝胶。粘液经由空间和/或粘附相互作用有效地截留常规微粒药物递送系统。由于粘液周转,大部分局部递送到粘膜表面的治疗剂存在滞留和分布较差的问题,这会限制其功效。深入渗透到粘液屏障中的生物可降解纳米粒子可提供粘膜表面处改进的药物分布、滞留以及功效。
[0004] 低分子量聚乙二醇(PEG)的致密涂层允许纳米粒子快速渗透穿过高度粘弹性的人类粘液分泌物。亲水性和生物惰性PEG涂层有效地使纳米粒子与粘液组分之间的粘附相互作用降到最低。生物可降解的粘液渗透性粒子(MPP)已通过某些PLURONIC(如F127)物理吸附到预制造的粘膜粘附性纳米粒子上来制备。另外,MPP已通过使用聚(癸二酸)与PEG的二嵌段共聚物纳米沉淀来制备。
[0005] 然而,通过纳米沉淀制备的生物可降解MPP的范围有限,因为其需要将药物和聚合物溶解于水可混溶的溶剂中。许多疏水性药物由于严重的全身性副作用而可受益于利用MPP的局部递送,然而其在水可混溶的有机溶剂中的较差溶解度限制了通过纳米沉淀有效囊封到MPP中。
[0006] 其它种类的新出现药物,包括核酸、肽以及蛋白质,具有在粘膜部位治疗疾病的无限潜力。然而,这些亲水性药物无法轻易地通过纳米沉淀调配到MPP中。乳液溶剂蒸发被广泛用于将亲水性药物(水包油包水双重乳液)和疏水性药物(水包油单一乳液)两者有效囊封到生物可降解纳米粒子中,然而,所得粒子当使用常规乳化剂聚乙烯醇(PVA)时是粘膜粘附性的。
[0007] 需要可将广泛药物囊封到纳米粒子中而不降低如上所述的粘液渗透性质的制备粘液渗透性粒子的新方法。类似地,需要经由注射投与的调配物。已确定的是,增强粘膜渗透者的类似涂层也减少由药物粒子诱发的炎症。
[0008] 因此,本发明的一个目的是提供制备粒子的方法和所得粒子,所述方法可将广泛药物囊封到生物可降解纳米粒子中而不降低粘液渗透性质或增加由如上所述粒子诱发的炎症。
[0009] 本发明的另一目的是提供粒子,如纳米粒子和微米粒子,所述粒子具有高药物负载量和表面改变材料的致密涂层以经由各种投药途径提供有效的药物递送。

发明内容

[0010] 由一或多种核心聚合物、一或多种表面改变材料以及一或多种低分子量乳化剂的乳液形成的纳米粒子已经开发。所述粒子通过以下方式制得:将所述一或多种核心聚合物溶解于有机溶剂中,将所述一或多种核心聚合物的溶液加入到所述乳化剂的水溶液或悬浮液中以形成乳液,且接着将所述乳液加入到所述乳化剂的第二溶液或悬浮液中以实现所述纳米粒子的形成。核心和乳化剂可为单独的,结合在一起,或呈含有一或多个表面改变材料嵌段的嵌段共聚物形式。在一个优选实施例中,表面改变材料是分子量为约1kD到约10kD、优选地约1kD到约5kD、更优选为约5kD的聚乙二醇。在这一实施例中,聚乙二醇的密度在利用1H NMR测量时是约1到约100条链/平方纳米,优选地约1到约50条链/平方纳米,更优选地约5到约50条链/平方纳米,最优选地约5到约25条链/平方纳米。
[0011] 乳化剂的分子量的临界点利用实例展示。在优选实施例中,一或多种乳化剂的分子量低于1500、1300、1200、1000、800、600或500amu。优选乳化剂包括胆酸钠盐、磺基琥珀酸钠二辛酯、溴化十六烷基三甲基铵、皂苷、 20、 80以及糖酯。所述表面改变材料是以一定的量存在,所述量在馈入所述一或多种乳化剂时有效地使所述粒子的表面电荷中性或基本上中性。所述乳化剂具有至少约50%、优选地至少55%、60%、65%、70%、
75%、80%、85%、90%或95%的乳化能力。
[0012] 所述纳米粒子尤其适用于递送治疗剂、防治剂、营养药剂或诊断剂。这些纳米粒子可经肠内、肠胃外或局部投与,优选地投与粘膜表面。在一个优选实施例中,所述粒子通过静脉内、皮下、肌肉内、腹膜内注射或结膜下投与。在一个实施例中,所述粒子被投与肺气道,经鼻内、阴道内、直肠或经颊投与。

附图说明

[0013] 图1a和1b是通过乳化方法制备的含有CHA和PVA的PLA-PEG和PCL-PEG纳米粒子的代表性轨迹。图1c和1d是展示整体平均几何均方位移(/μm2)随时间(时标/s)而变的图式。图1e和1f是展示在1s的时标下个别粒子有效扩散率(Deff)的对数分布的图式。图1g和1h是展示随时间能够渗透生理学30μm厚粘液层的粒子的估计分率的图式。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。
[0014] 图2a和2b展示了PEG MW对MPP在人类子宫颈阴道粘液中的转运速率的作用:图2a是展示整体平均几何均方位移随时标/s而变的图式。图2b是展示在1s的时标下个别粒子有效扩散率(Deff)的对数分布的图式。粒子使用PLGA-PEG(6重量%PEG)用乳化方法制备。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。
[0015] 图3a是展示整体平均几何均方位移随时标/s而变的图式。图3b是展示在1s的时标下个别粒子有效扩散率(Deff)的对数分布的图式。图3c是展示随时间预测能够渗透30μm厚粘液层的粒子的估计分率的图式。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。
[0016] 图4a-c是说明表面PEG覆盖率([Γ/Γ*])对纳米粒子的粘液渗透的影响的示意图。图4a-c展示以渐增覆盖率制备具有表面PEG涂层的PLGA-PEG纳米粒子。随着表面PEG覆盖率增加,PEG状态从蘑菇(邻近PEG链不重叠,[Γ/Γ*]<1,图4a)变成刷子(邻近PEG链重叠,1<[Γ/Γ*]<3,图4b)变成致密刷子([Γ/Γ*]>3,图4c)。在低PEG覆盖率([Γ/Γ*]<1,图4a)下,粘蛋白纤维强力粘附于纳米粒子核心。在中等PEG覆盖率(1<[Γ/Γ*]<3,图4b)下,粘蛋白纤维仍可部分吸收到纳米粒子核心。在高([Γ/Γ*]>3,图4c)PEG覆盖率下,纳米粒子核心完全由生物惰性PEG冠环遮蔽,使得无粘蛋白吸收到纳米粒子中。图4c展示了具有低PEG覆盖率的纳米粒子固定于粘液中,具有中等PEG覆盖率的纳米粒子受到阻碍或甚至固定在粘液中,且具有高和极高PEG覆盖率的纳米粒子能够快速渗透粘液。

具体实施方式

[0017] I.定义
[0018] 如本文中所用的“纳米粒子”通常是指直径为约1nm直到(但不包括)约1微米、更优选约5nm到约500nm、最优选约5nm到约100nm的任何形状的粒子。具有球形的纳米粒子通常被称为“纳米球”。
[0019] 如本文中所用的“平均粒度”通常是指粒子群体中粒子的统计学平均粒度(直径)。基本上球形的粒子的直径可称为物理或流体动力学直径。非球形粒子的直径可优选地指流体动力学直径。如本文中所用,非球形粒子的直径可指粒子表面上两点之间的最大直线距离。平均粒度可使用本领域中已知方法(如动态光散射法)测量。
[0020] 如本文中所用的“质量中值空气动力直径”(MMAD)是指多个粒子的中值空气动力粒径。“空气动力直径”是通常在空气中与粉末具有相同沉降速度的单位密度球体的直径,并且因此是在沉降行为方面表征气溶胶化粉末或其它分散粒子或粒子调配物的有用方式。空气动力直径涵盖粒子或粒子形状、密度以及粒子或粒子的物理大小。MMAD可以实验方式利用本领域中已知方法(如利用级联撞击)测定。
[0021] 如本文中所用的“振实密度”是指粉末密度的量度。振实密度可使用USP堆积密度和振实密度(USP Bulk Density and Tapped Density),美国药典委员会(United States Pharmacopia convention),马里兰州罗克维尔(Rockville,Md.),第10版增刊,4950-4951,1999的方法测定。可有助于低振实密度的特征包括不规则表面质地和多孔结构。
[0022] “单分散”和“均质粒径分布”在本文中可互换使用且描述其中粒子具有相同或几乎相同直径或空气动力直径的多个纳米粒子或微米粒子。如本文中所用,单分散分布是指其中80%、81%、82%、83%、84%、85%、86%、86%、88%、89%、90%、91%、92%、93%、94%、95%或更大的分布处于质量中值直径或空气动力直径的5%内的粒子分布。
[0023] 如本文中所用的“经肺投与”是指将含有活性剂的医药调配物通过吸入投与肺中。如本文中所用,术语“吸入”是指将空气吸入肺泡中。空气吸入可经由口或鼻进行。空气吸入可通过在吸入的同时自身投与调配物或通过经由呼吸器投与依靠呼吸器的患者来进行。
[0024] 如本文中所用的“医药学上可接受的”是指根据如食品和药物管理局(Food and Drug Administration)的机构的方针,在合理的医学判断范围内适用于与人类和动物组织接触而无过度毒性、刺激、过敏反应或与合理利益/风险比相称的其它问题或并发症的化合物、材料、组合物和/或剂型。
[0025] 如本文中所用的“生物相容的”和“生物学上相容的”通常是指连同其任何代谢物或降解产物一起对接受者通常是无毒的材料,且所述材料不会对接受者引起任何显著副作用。一般说来,生物相容的材料是在投与患者时不会诱发显著发炎或免疫反应的材料。
[0026] 除非另有规定,否则如本文中所用的“分子量”通常是指本体聚合物的相对平均链长。实际上,分子量可使用包括凝胶渗透色谱法(GPC)或毛细管测粘法的各种方法估计或表征。GPC分子量被报导为重量平均分子量(Mw),与数量平均分子量(Mn)相对。毛细管测粘法提供分子量的估计,如使用特定组的浓度、温度以及溶剂条件从稀聚合物溶液测定的固有粘性。
[0027] 如本文中所用的“亲水性”是指对水具有亲和力的性质。举例来说,亲水聚合物(或亲水聚合物片段)是主要可溶于水性溶液和/或具有吸水倾向的聚合物(或聚合物片段)。一般说来,聚合物越亲水,所述聚合物越倾向于溶解于水中,与水混合或被水湿润。
[0028] 如本文中所用的“疏水性”是指对水缺乏亲和力或甚至排斥水的性质。举例来说,聚合物(或聚合物片段)越疏水,所述聚合物(或聚合物片段)越倾向于不溶解于水中,不与水混合或不被水湿润。
[0029] 如本文中所用的“粘液”是指主要含有粘蛋白型糖蛋白和其它物质的粘弹性天然物质,其保护各种器官/组织(包括呼吸、鼻、子宫颈阴道、胃肠、直肠、视觉以及听觉系统)的上皮表面。如本文中所用的“痰液”是指高度粘弹性粘液分泌物,其除粘蛋白型糖蛋白之外还由各种高分子如DNA、肌动蛋白以及由死细胞释放的其它细胞碎片组成。“痰液”通常存在于罹患阻塞性肺疾病(包括(但不限于)哮喘、COPD以及CF)的患者的病原性气管中。如本文中所用的“CF粘液”和“CF痰液”分别是指来自罹患囊性纤维化的患者的粘液和痰液。
[0030] 如本文中所用的“粘液降解剂”是指在投与患者时增大粘液清除速率的物质。粘液降解剂为本领域中已知。参见,例如黑尼斯J.(Hanes,J.)等人基因递送到肺(Gene Delivery to the Lung),医药吸入气溶胶技术(Pharmaceutical Inhalation Aerosol Technology),马塞尔德克尔公司(Marcel Dekker,Inc.),纽约(New York):489-539(2003)。粘液降解剂的实例包括N-乙酰半胱氨酸(NAC),其裂解粘蛋白中存在的二硫键和硫氢键。其它粘液降解剂包括艾蒿(mugwort)、菠萝蛋白酶(bromelain)、木瓜蛋白酶(papain)、大青属(clerodendrum)、乙酰半胱氨酸、溴己新(bromhexine)、羧甲司坦(carbocisteine)、依普拉酮(eprazinone)、美司钠(mesna)、氨溴索(ambroxol)、索布瑞醇(sobrerol)、多米奥醇(domiodol)、地纽福索(denufosol)、莱托稀痰(letosteine)、司替罗宁(stepronin)、硫普罗宁(tiopronin)、凝溶胶蛋白(gelsolin)、胸腺素β4、奈替克新(neltenexine)、厄多司坦(erdosteine)以及各种DNase(包括rhDNase)。
[0031] 如本文中所用的“CF粘液抗性/扩散性粒子”是指在CF粘液中呈现出降低的或较低粘膜粘附性的粒子,且因此所述粒子以与其它粒子相比较高的速率通过CF粘液。所述粒子特征可在于在CF粘液中间具有高扩散性。在某些实施例中,CF粘液抗性/扩散性粒子在CF粘液中具有大于约0.01μm2/s、更优选大于约0.5μm2/s、最优选大于约1μm2/s的有效扩散率。在优选实施例中,如果粒子群体的至少30%、更优选至少40%、最优选至少50%在一小时内扩散跨越10μm厚CF痰液层,那么所述粒子群体特征可在于“CF粘液抗性/扩散性”。
[0032] 如本文中所用的“囊性纤维化”(CF)是指由编码囊性纤维化跨膜转运调节因子(CFTR)的基因中的一或多个突变引起的遗传性基因疾病。在患有囊性纤维化的患者中,在呼吸上皮中内源性表达的CFTR的突变导致顶端阴离子分泌减少,引起离子和流体转运失去平衡。所引起的阴离子转运减少有助于肺内粘液累积增加和同时发生的最终引起CF患者死亡的微生物感染。除了呼吸道疾病之外,CF患者通常受到胃肠问题和胰脏机能不全的困扰,如果未经治疗,会导致死亡。CF染色体的CFTR基因的序列分析已揭示了引起突变的多种疾病。迄今为止,已鉴别了超过1000种引起CF基因突变的疾病(http://www.genet.sickkids.on.ca/cftr/)。最普遍的突变是在CFTR氨基酸序列的508位的苯丙氨酸的缺失,且其通常被称为ΔF508-CFTR。这种突变发生在约70%的囊性纤维化病例中,并与严重疾病相关。在美国,在每2,500个婴儿中囊性纤维化影响约一个婴儿。
[0033] 如本文中所用的“囊性纤维化跨膜转运调节因子”(CFTR)是指对于维持整个体内(包括呼吸和消化组织)电解质转运至关重要的跨膜蛋白质。CFTR由约1480个氨基酸组成,所述氨基酸编码由衔接重复的跨膜域构成的蛋白质,每一跨膜域含有六个跨膜螺旋和核苷酸结合域。编码CFTR的基因已经鉴别和测序。参见格雷戈里R.J.(Gregory,R.J.)等人自然(Nature)347:382386(1990);瑞迟D.P.(Rich,D.P.)等人自然347:358-362(1990)以及赖尔登J.R.(Riordan,J.R.)等人科学(Science)245:1066-1073(1989)。
[0034] 如本文中所用的“核酸”是指为了各种治疗目的经修饰以增强稳定性的DNA、RNA以及核酸分子。一个实例是编码人类囊性纤维化跨膜转运调节因子(CFTR)蛋白、其类似物以及变体的基因,所述基因可在CF个体中表达以至少部分地矫正CF的一些症状特征。这也包括如DNA片段的分子,包括用于将矫正或修饰引入到基因中的区域,如三螺旋形成DNA,其可用于在至少一些CF患者基因中矫正内源性CF基因。应注意到,这一术语不局限于CFTR基因,而是应用于可用于治疗、诊断或治愈疾病的每种遗传物质。
[0035] 短语“肠胃外投与”和“肠胃外地投与”是本领域公认术语,且包括除肠内和局部投与以外的投与方式,如注射,且包括(但不限于)静脉内、肌内、胸膜内、血管内、心包内、动脉内、鞘内、囊内、眶内、心内、皮内、腹膜内、经气管、皮下、表皮下、关节内、囊下、蛛网膜下、脊柱内、结膜内以及胸骨内注射和输注。
[0036] 如本文中所用的术语“表面活性剂”是指降低液体表面张力的试剂。
[0037] 术语“治疗剂”是指可经投与以预防或治疗疾病或病症的药剂。治疗剂可为核酸、核酸类似物、小分子、肽模拟物、蛋白质、肽、碳水化合物或糖、脂质、或表面活性剂或其组合。
[0038] 术语“治疗”或预防疾病、病症或病状免于发生在可易患所述疾病、病症和/或病状但还未被诊断为患有其的动物中;抑制所述疾病、病症或病状,例如阻碍其发展;以及减轻所述疾病、病症或病状,例如引起所述疾病、病症和/或病状消退。治疗疾病或病状包括改善特定病原或病状的至少一个症状,即使潜在病理生理学不受影响,如通过投与止痛剂来治疗个体的疼痛,即使所述药剂并不治疗疼痛的病因。
[0039] 如本文中所用的术语“靶向部分”是指定位于或远离特定场所的部分。所述部分可例如为蛋白质、核酸、核酸类似物、碳水化合物或小分子。实体可例如为治疗性化合物,如小分子,或诊断实体,如可检测标记。场所可为组织、特定细胞类型或亚细胞区室。在一个实施例中,靶向部分引导活性实体的局部化。活性实体可为小分子、蛋白质、聚合物或金属。活性实体可适用于治疗性、防治性或诊断性目的。
[0040] 术语“治疗有效量”是指在结合到本文中描述的粒子之中和/或之上时在可适用于任何医学治疗的合理利益/风险比下产生一些所需作用的治疗剂的量。有效量可取决于如所治疗的疾病或病状、所投与的特定靶向构建体、个体大小、疾病或病状的严重性的因素改变。本领域普通技术人员可凭经验确定特定化合物的有效量而无需进行过度实验。
[0041] 术语“结合”和“囊封”是指将活性剂结合、调配或以其它方式包括到在所需应用中允许释放(如持续释放)所述药剂的组合物之中和/或之上。所述术语涵盖将治疗剂或其它物质结合到聚合物基体中的任何方式,包括例如:(通过共价、离子或其它结合相互作用)连接于所述聚合物的单体,物理掺合,将药剂封装在聚合物涂层中,结合到聚合物中,分配在整个聚合物基体中,(通过共价或其它结合相互作用)附加到聚合物基体表面,囊封到聚合物基体内部等。术语“共结合”或“共囊封”是指治疗剂或其它物质与至少一种其它治疗剂或其它物质结合在主题组合物中。
[0042] II.粘液渗透性纳米粒子(MPP)
[0043] A.核心聚合物
[0044] 许多生物相容性聚合物可用于制备纳米粒子。在一个实施例中,生物相容性聚合物是生物可降解的。在另一实施例中,粒子是不可降解的。在其它实施例中,粒子是可降解和不可降解粒子的混合物。
[0045] 示例性聚合物包括(但不限于)含有环糊精的聚合物,尤其含有阳离子环糊精的聚合物,如美国专利第6,509,323号所述的那些;
[0046] 由内酯制备的聚合物,如聚(己内酯)(PCL);
[0047] 多羟基酸和其共聚物,如聚(乳酸)(PLA)、聚(L-乳酸)(PLLA)、聚(乙醇酸)(PGA)、聚(乳酸-共-乙醇酸)(PLGA)、聚(L-乳酸-共-乙醇酸)(PLLGA)、聚(D,L-丙交酯)(PDLA)、聚(D,L-丙交酯-共-己内酯)、聚(D,L-丙交酯-共-己内酯-共-乙交酯)、聚(D,L-丙交酯-共-PEO-共-D,L-丙交酯)、聚(D,L-丙交酯-共-PPO-共-D,L-丙交酯)以及其掺合物;
[0048] 聚烷基氰基丙烯酸酯;
[0049] 聚氨基甲酸酯;
[0050] 聚氨基酸,如聚-L-赖氨酸(PLL)、聚(戊酸)以及聚-L-谷氨酸;
[0051] 甲基丙烯酸羟丙酯(HPMA);
[0052] 聚酸酐;
[0053] 聚酯;
[0054] 聚原酸酯;
[0055] 聚(酯酰胺);
[0056] 聚酰胺;
[0057] 聚(酯醚);
[0058] 聚碳酸酯;
[0059] 聚亚烷基,如聚亚乙基和聚亚丙基;
[0060] 聚亚烷基二醇,如聚(乙二醇)(PEG);聚亚烷基氧化物(PEO);
[0061] 聚对苯二甲酸亚烷基酯,如聚(对苯二甲酸乙二酯);乙烯乙酸乙烯酯聚合物(EVA);
[0062] 聚乙烯醇(PVA);
[0063] 聚乙烯醚;
[0064] 聚乙烯酯,如聚(乙酸乙烯酯);
[0065] 聚卤乙烯,如聚(氯乙烯)(PVC);聚乙烯吡咯烷酮;聚硅氧烷;
[0066] 聚苯乙烯(PS);
[0067] 纤维素,包括衍生纤维素,如烷基纤维素、羟烷基纤维素、纤维素醚、纤维素酯、硝基纤维素、羟丙基纤维素以及羧甲基纤维素;
[0068] 丙烯酸的聚合物,如聚((甲基)丙烯酸甲酯)(PMMA)、聚((甲基)丙烯酸乙酯)、聚((甲基)丙烯酸丁酯)、聚((甲基)丙烯酸异丁酯)、聚((甲基)丙烯酸己酯)、聚((甲基)丙烯酸异癸酯)、聚((甲基)丙烯酸月桂酯)、聚((甲基)丙烯酸苯酯)、聚(丙烯酸甲酯)、聚(丙烯酸异丙酯)、聚(丙烯酸异丁酯)、聚(丙烯酸十八酯)(本文中合称为“聚丙烯酸”);
[0069] 聚二噁烷酮和其共聚物;
[0070] 聚羟基烷酸酯;
[0071] 聚富马酸丙二醇酯;
[0072] 聚甲醛;
[0073] 泊洛沙姆(poloxamer);
[0074] 聚(丁酸);
[0075] 三亚甲基碳酸酯;以及
[0076] 聚磷氮烯。
[0077] 还可以使用以上各者的共聚物(如随机、嵌段或接枝共聚物)或上列聚合物的掺合物。
[0078] 聚合物上的官能团可经加帽以改变所述聚合物的性质和/或改变(例如减小或增大)所述官能团的反应性。举例来说,含甲酸聚合物(如含有丙交酯和含有乙交酯的聚合物)的羧基端可任选地例如通过酯化来加帽,且羟基端可任选地例如通过醚化或酯化来加帽。
[0079] PEG或其衍生物与上述聚合物中的任一者的共聚物可用于制造聚合粒子。在某些实施例中,PEG或衍生物可位于共聚物的内部位置。或者,PEG或衍生物可位于共聚物的末端位置附近或共聚物的末端位置处。举例来说,以上聚合物中的一或多者可用聚乙二醇嵌段封端。在一些实施例中,核心聚合物为聚乙二醇化聚合物和非聚乙二醇化聚合物的掺合物,其中基础聚合物是相同的(例如PLGA和PLGA-PEG)或不同的(例如PLGA-PEG和PLA)。在某些实施例中,微米粒子或纳米粒子是在允许PEG的区域相分离或以其它方式定位于粒子表面的条件下形成的。仅定位于表面的PEG区域可表现出表面改变剂或包括表面改变剂的功能。在特定实施例中,粒子是由经作为表面改变材料的聚乙二醇嵌段封端的一或多种聚合物制备的。
[0080] 给定聚合物的重量平均分子量可以不同,但通常为约1000道尔顿(Dalton)到1,000,000道尔顿、1000道尔顿到500,000道尔顿、1000道尔顿到250,000道尔顿、1000道尔顿到100,000道尔顿、5,000道尔顿到100,000道尔顿、5,000道尔顿到75,000道尔顿、5,000道尔顿到50,000道尔顿或5,000道尔顿到25,000道尔顿。
[0081] 优选天然聚合物的实例包括蛋白质(如白蛋白)、胶原、明胶以及醇溶谷蛋白(例如玉米蛋白)以及多糖(如海藻酸盐)。
[0082] 在一些实施例中,粒子可用作纳米粒子基因载体。在这些实施例中,粒子可由与一或多种带负电荷的核酸复合的一或多种聚阳离子聚合物形成。
[0083] 阳离子聚合物可为每分子带有至少两个正电荷的任何合成或天然聚合物,且其具有足够的电荷密度和分子大小以在生理条件(即,在体内或在细胞内遇到的pH值和盐条件)下结合于核酸。在某些实施例中,聚阳离子聚合物含有一或多个胺残基。
[0084] 适合的阳离子聚合物包括例如聚乙烯亚胺(PEI)、聚烯丙基胺、聚乙烯胺、聚乙烯吡啶、氨基缩醛化聚(乙烯醇)、带有一或多个胺残基的丙烯酸或甲基丙烯酸聚合物(例如聚(N,N-二甲基氨基乙基丙烯酸脂))、聚氨基酸(如聚鸟氨酸、聚精氨酸以及聚赖氨酸)、鱼精蛋白、阳离子多糖(如壳聚糖)、DEAE-纤维素以及DEAE-右旋糖酐以及聚酰胺胺树枝状聚合物(阳离子树枝状聚合物)以及其共聚物和掺合物。在优选实施例中,聚阳离子聚合物是PEI。
[0085] 阳离子聚合物可为线性或分支的,可为均聚物或共聚物,且在含有氨基酸时可具有L或D构型,且可具有这些特征的任何混合。优选地,阳离子聚合物分子充分柔性以允许其与一或多个核酸分子形成紧密复合体。
[0086] 在一些实施例中,聚阳离子聚合物的分子量在约5,000道尔顿与约100,000道尔顿之间,更优选在约5,000与约50,000道尔顿之间,最优选在约10,000与约35,000道尔顿之间。
[0087] B.促进通过粘液扩散的材料
[0088] 纳米粒子优选地包衣有或含有一或多种表面改变剂或材料。如本文中所用的“表面交替剂”是指针对表面修改粒子的一或多种性质的试剂或材料,所述性质包括(但不限于)亲水性(例如使粒子更亲水或更不亲水)、表面电荷(例如使表面中性或接近中性或更负性或正性)和/或增强在体液和/或组织(如粘液)中或通过其的转运。在一些实施例中,表面交替材料提供直接的治疗性作用,如减少炎症。
[0089] 表面改变剂的实例包括(但不限于)蛋白质,包括阴离子蛋白质(例如白蛋白);表面活性剂;糖或糖衍生物(例如环糊精);治疗剂;以及聚合物。优选的聚合物包括肝素、聚乙二醇(“PEG”)以及泊洛沙姆(聚环氧乙烷嵌段共聚物)。最优选的材料是PEG。
[0090] 表面活性剂的实例包括(但不限于)L-α-磷脂酰胆碱(PC)、1,2-二棕榈酰磷脂酰胆碱(DPPC)、油酸、脱水山梨糖醇三油酸酯、脱水山梨糖醇单油酸酯、脱水山梨糖醇单月桂酸酯、聚氧乙烯(20)脱水山梨糖醇单月桂酸酯、聚氧乙烯(20)脱水山梨糖醇单油酸酯、天然卵磷脂、油烯基聚氧乙烯(2)醚、硬脂酰聚氧乙烯(2)醚、月桂基聚氧乙烯(4)醚、环氧乙烷和环氧丙烷的嵌段共聚物、合成卵磷脂、二甘醇二油酸脂、油酸四氢糠酯、油酸乙酯、肉豆蔻酸异丙酯、甘油单油酸酯、甘油单硬脂酸酯、甘油单蓖麻油酸酯、鲸蜡醇、硬脂醇、聚乙二醇400、氯化十六烷基吡啶、苯扎氯铵、橄榄油、甘油单月桂酸酯、玉米油、棉籽油以及葵花籽油、卵磷脂、油酸以及脱水山梨糖醇三油酸酯。
[0091] 在一个实施例中,粒子包衣有或含有聚乙二醇(PEG)。PEG可作为涂层施用到粒子表面上。或者,PEG可呈与用于形成粒子的核心聚合物共价结合(例如在内部或在一端或两端)的嵌段的形式。在特定实施例中,粒子由含有PEG的嵌段共聚物形成。在更特定实施例中,粒子由含有PEG的嵌段共聚物制备,其中PEG共价结合于基础聚合物的末端。
[0092] 代表性PEG分子量包括300Da、600Da、1kDa、2kDa、3kDa、4kDa、6kDa、8kDa、10kDa、15kDa、20kDa、30kDa、50kDa、100kDa、200kDa、500kDa以及1MDa以及在300道尔顿到1MDa范围内的所有值。在优选实施例中,PEG的分子量为约5kD。任何给定分子量的PEG可在其它特征(如长度、密度以及分支)方面不同。
[0093] i.评估表面密度
[0094] 纳米粒子上聚(乙二醇)(PEG)的表面密度是测定其体内成功施用的关键参数。药物到粘膜表面的受控递送是个难题,因为存在保护性粘液层,且粘液渗透性粒子在粘膜表面处改进的阻力分布、滞留以及功效方面展示出前景。生物可降解纳米粒子上PEG的致密涂层因粘液组分与纳米粒子之间大大减小的粘附相互作用而可允许快速渗透通过粘液。然而,仍不清楚的是如何最佳地控制表面PEG密度以及如何制备生物可降解的粘液渗透性纳米粒子以用于体内施用。
[0095] 不同的方法已用于评估纳米粒子上的表面PEG密度,包括直接测量纳米粒子生理化学性质变化的那些,如表面电荷和流体动力学直径。然而,这些方法无法提供关于每平方纳米粒子表面PEG链数目的定量信息。
[0096] 为了直接定量表面PEG密度,已应用各种技术。热解重量分析(TGA)可用于计算PEG含量,但限于无机材料且还需要使用相对大量的样品。
[0097] 染料和试剂(如荧光染料)对官能性PEG的反应被广泛用于PEG定量。在这些方法中,具有官能团(如-SH、-NH2等)的未反应的PEG分子在与特定试剂反应之后通过荧光分析或比色定量进行定量,且表面PEG密度通过减去上清液中未反应的PEG部分来获得。然而,这些方法限于表面PEG化和官能性PEG。用于通过测量上清液中未反应的荧光素-PEG的信号来定量PRINT纳米粒子上的表面PEG密度的类似方法限于用PEG对纳米粒子进行表面改性。因此,这些定量分析并不适用于测定由含PEG的嵌段共聚物(如广泛使用的聚(乳酸-共-乙醇酸)-聚(乙二醇)(PLGA-PEG)和聚(乳酸)-聚(乙二醇)(PLA-PEG))制备的生物可降解纳米粒子上的PEG密度。
[0098] 核磁共振(NMR)可用于在定性和定量两者上评估本文中所述的含PEG的聚合纳米粒子上的表面PEG密度(PEG峰通常观察为约3.65ppm)。当纳米粒子分散在NMR溶剂D2O内时,仅表面PEG(而非包埋在核心内的PEG)可直接通过NMR检测。因此,NMR提供了用于直接测量PEG表面密度的手段。
[0099] 在一些实施例中,PEG表面密度可通过从PEG化和非PEG化粒子的混合物制备粒子进行控制。举例来说,PLGA纳米粒子上PEG的表面密度可通过从聚(乳酸-共-乙醇酸)与聚(乙二醇)的混合物(PLGA-PEG)制备粒子来精确控制。定量1H核磁共振(NMR)可用于测量纳米粒子上的表面PEG密度。人类粘液中的多个粒子追踪以及小鼠阴道中粘蛋白结合和组织分布的研究揭露了对于在渗透粘液方面有效的PLGA-PEG纳米粒子来说,存在PEG密度阈值,所述阈值约为每100平方纳米10-16条PEG链。这一密度阈值可不同,取决于各种因素,包括用于制备粒子的核心聚合物、粒径和/或PEG分子量。
[0100] 涂层的密度可基于各种因素变化,包括表面改变材料和粒子组分。在一个实施例中,表面改变材料(如PEG)的密度如利用1H NMR测量是至少0.1、0.2、0.5、0.8、1、2、5、8、10、15、20、25、40、50、60、75、80、90或100条链/平方纳米。以上范围包括从0.1到100个单元/平方纳米的所有值在内。
[0101] 在特定实施例中,表面改变材料(如PEG)的密度是约1到约25条链/平方纳米、约1到约20条链/平方纳米、约5到约20条链/平方纳米、约5到约18条链/平方纳米、约5到约15条链/平方纳米或约10到约15条链/平方纳米。表面改变材料(如PEG)的浓度也可以是不同的。在一些实施例中,表面改变材料(如PEG)的目标浓度是至少0.5%、1%、2%、3%、4%、5%、
6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、
22%、23%、24%、或25%或更高。以上范围包括从0.5%到25%的所有值在内。在另一实施例中,粒子中表面改变材料(如PEG)的浓度是至少0.5%、1%、2%、3%、4%、5%、6%、7%、
8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、
23%、24%、或25%或更高。以上范围包括从0.5%到25%的所有值在内。在其它实施例中,粒子表面上的表面改变材料含量(例如PEG)是至少0.5%、1%、2%、3%、4%、5%、6%、7%、
8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、
23%、24%、或25%。以上范围包括从0.5%到25%的所有值在内。
[0102] 在特定实施例中,表面改变材料(例如PEG)的密度使得表面改变材料(例如PEG)采用延伸的刷子配置。
[0103] 在其它实施例中,表面改变部分的质量是粒子质量的至少1/10,000、1/7500、1/5000、1/4000、1/3400、1/2500、1/2000、1/1500、1/1000、1/750、1/500、1/250、1/200、1/150、
1/100、1/75、1/50、1/25、1/20、1/5、1/2或9/10。以上范围包括从1/10,000到9/10的所有值在内。
[0104] C.乳化剂
[0105] 本文中所述的粒子含有乳化剂,尤其低分子量乳化剂。乳化剂在粒子形成过程中结合到粒子中并且因此成为成品粒子的组分。乳化剂可囊封在粒子内,完全或部分地分散在聚合物基体内(例如乳化剂的一部分从聚合物基体中伸出)和/或与粒子表面缔合(例如以共价方式或以非共价方式)。
[0106] 如本文中所用的“低分子量”通常是指分子量不到1500、1400、1300、1200、1100、1000、900、800、700、600、500、400或300amu的乳化剂。在一些实施例中,分子量不到
1300amu。在一些实施例中,分子量为约300amu到约1200amu。
[0107] 乳化剂可为带正电的、带负电的或不带电的。带负电的乳化剂的实例包括(但不限于)胆酸钠盐(CHA,MW=430)和磺基琥珀酸钠二辛酯(DSS,MW=455)。带正电的乳化剂的实例包括(但不限于)溴化十六烷基三甲基铵(CTAB,MW=364)。不带电的乳化剂的实例包括(但不限于)皂苷(MW=1191)、TWEEN20(MW=1,225)、TWEEN80(MW=1310)以及糖酯D1216(蔗糖月桂酸脂,SE,MW=524)。
[0108] 除具有低分子量之外,乳化剂必须能够在粒子形成过程中适当地使乳液小滴稳定以免粒子聚集。特定乳化剂的乳化能力可使用以下方程式计算且可以百分比形式表示。
[0109] 乳化能力=纳米粒子重量/(纳米粒子重量+聚集粒子重量)×100%
[0110] 在一些实施例中,乳化能力是至少50%、55%、60%、65%、70%、75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%或95%。这一范围包括在50与95之间的所有值在内。
[0111] 除适当稳定乳液小滴以防止聚集体形成之外,稳定剂必须小到足以在粒子表面处被表面改变材料冠环(例如PEG)完全遮蔽,从而提供中性或接近中性的表面电荷。带电粒子的转运可因体内带电荷粒子与带相反电荷物质的相互作用而受到阻碍。举例来说,粒子快速渗透粘液的能力至少部分取决于粒子的表面电荷。因此,乳化剂必须足够小使得乳化剂如果带电荷(例如带正电或负电),那么电荷被表面改变材料(例如PEG)的冠环遮蔽,使得表面电荷为零或基本上为零,例如-10到10ev、-5到5ev、-3到3ev、-2到2ev或-1到1ev。
[0112] D.治疗剂、防治剂、营养药剂和/或诊断剂
[0113] 1.治疗剂
[0114] 在一些实施例中,粒子具有一或多种治疗剂囊封于其中、分散于其中和/或以共价方式或以非共价方式与表面缔合。治疗剂可为小分子、蛋白质、多糖或糖类、核酸分子和/或脂质。
[0115] i.小分子治疗剂
[0116] 小分子治疗剂的示例性种类包括(但不限于)止痛剂、抗炎药物、解热剂、抗抑郁剂、抗癫痫剂、抗精神病剂、神经保护剂、抗增生剂(如抗癌剂)、抗感染剂(如抗细菌剂和抗真菌剂)、抗组胺剂、抗偏头痛药物、抗毒蕈碱剂、抗焦虑剂、镇静剂、催眠药、抗精神病药、支气管扩张剂、抗哮喘药物、心血管药物、皮质类固醇、多巴胺能剂、电解质、胃肠药物、肌肉松弛药、营养剂、维生素、拟副交感神经药、兴奋剂、减食欲剂以及抗嗜睡剂。
[0117] ii.核酸
[0118] 在一些实施例中,药剂是一或多种核酸。所述核酸可改变、矫正或置换内源性核酸序列。核酸用于治疗癌症,矫正其它肺疾病和影响肺功能的代谢疾病中的基因、如用于治疗帕金森氏病(Parkinsons)和ALS的基因的基因中的缺陷,其中所述基因通过经鼻递送到达脑。
[0119] 基因疗法是一种用于矫正造成疾病发展的缺陷性基因的技术。研究人员可使用若干方法中的一种来矫正有缺陷的基因:
[0120] ·正常基因可被插入基因组内的非特定位置中以置换非功能基因。这一方法是最常见的。
[0121] ·异常基因可通过同源重组交换正常基因。
[0122] ·异常基因可通过选择性回复突变修复,所述回复突变使基因回到其正常功能。
[0123] ·可改变特定基因的调节(基因被打开或关闭的程度)。
[0124] 核酸可为DNA、RNA、经化学修饰的核酸或其组合。举例来说,用于增强核酸半衰期的稳定性和对酶促裂解的抗性的方法为本领域中已知,且可包括对核碱基、糖或聚核苷酸键合的一或多种修饰或取代。核酸可经定制合成以含有适合于适应所需用途的性质。常见修饰包括(但不限于)使用锁核酸(LNA)、非锁核酸(UNA)、吗啉代、肽核酸(PNA)、硫代磷酸酯键合、磷酰基乙酸酯键合、丙炔类似物、2'-O-甲基RNA、5-Me-dC、2'-5'连接的磷酸二酯键合、嵌合键合(混合硫代磷酸酯和磷酸二酯键合和修饰)、与脂质和肽结合以及其组合。
[0125] 在一些实施例中,核酸包括核苷酸间键合修饰,如具有非手性且不带电的亚基间键合的磷酸酯类似物(例如斯特查克E.P.(Sterchak,E.P.)等人,有机化学(Organic Chem.),52:4202,(1987))或具有非手性亚基间键合的不带电的基于吗啉代的聚合物(参见例如美国专利第5,034,506号)。一些核苷酸间键合类似物包括吗啉酸酯、乙缩醛以及聚酰胺连接的杂环。其它主链和键合修饰包括(但不限于)硫代磷酸酯、肽核酸、三环-DNA、诱骗寡核苷酸、核糖酶、镜像异构体(含有L核酸,具有高结合亲和力的适配体)或CpG寡聚物。
[0126] 硫代磷酸酯(或S-oligo)是正常DNA的变体,其中非桥接氧中的一者经硫置换。核苷酸间键的硫化显著减小核酸内切酶和核酸外切酶(包括5'到3'和3'到5'DNA POL1核酸外切酶、核酸酶S1和P1、RNase、血清核酸酶以及蛇毒磷酸二酯酶)的作用。另外,越过脂双层的潜力增大。由于这些重要改进,已发现硫代磷酸酯在细胞调节中的增强应用。硫代磷酸酯通过两条主要路线制得:元素硫于二硫化碳中的溶液对氢膦酸酯的作用,或用二硫化四乙基秋兰姆(TETD)或3H-1,2-苯并二硫醇-3-酮1,1-二氧化物(BDTD)对亚磷酸三酯进行硫化的更新近方法。4后一方法避免了元素硫不可溶于大多数有机溶剂中和二硫化碳毒性的问题。TETD和BDTD方法还产生较高纯度的硫代磷酸酯。
[0127] 肽核酸(PNA)是寡核苷酸的磷酸酯主链全部被重复的N-(2-氨基乙基)-甘氨酸单元置换且磷酸二酯键被肽键置换的分子。各种杂环碱基利用亚甲基羰基键与主链连接。PNA维持与寡核苷酸类似的杂环碱基的间隙,但为非手性且电荷中性的分子。肽核酸通常包含肽核酸单体。杂环碱基可为标准碱基(尿嘧啶、胸腺嘧啶、胞嘧啶、腺嘌呤以及鸟嘌呤)中的任一者或下文所述经修饰的杂环碱基中的任一者。PNA还可具有一或多个肽或氨基酸变体和修饰。因此,PNA的主链组分可为肽键合,或者可替代地,其可为非肽键合。实例包括乙酰基帽、氨基间隔子如8-氨基-3,6-二氧杂辛酸(本文中称为O-连接子)等。用于PNA化学装配的方法为熟知的。
[0128] 在一些实施例中,核酸包括一或多种经化学修饰的杂环碱基,包括(但不限于)肌苷、5-(1-丙炔基)尿嘧啶(pU)、5-(1-丙炔基)胞嘧啶(pC)、5-甲基胞嘧啶、8-氧代-腺嘌呤、假胞嘧啶、假异胞嘧啶、5和2-氨基-5-(2'-脱氧-β-D-呋喃核糖基)吡啶(2-氨基吡啶)以及各种吡咯并和吡唑并嘧啶衍生物、4-乙酰胞嘧啶、8-羟基-N-6-甲基腺苷、氮杂环丙烯基胞嘧啶、5-(羧羟甲基)尿嘧啶、5-溴尿嘧啶、5-羧甲基氨甲基-2-硫尿嘧啶、5-羧甲基氨甲基尿嘧啶、二氢尿嘧啶、N6-异戊烯基腺嘌呤、1-甲基腺嘌呤、1-甲基假尿嘧啶、1-甲基鸟嘌呤、1-甲基肌苷、2,2-二甲基鸟嘌呤、2-甲基腺嘌呤、2-甲基鸟嘌呤、3-甲基胞嘧啶、N6-甲基腺嘌呤、7-甲基鸟嘌呤、5-甲基氨甲基尿嘧啶、5-甲氧基-氨甲基-2-硫尿嘧啶、β-D-甘露糖Q核苷、5'-甲氧基羰基甲基尿嘧啶、5-甲氧基尿嘧啶、2-甲硫基-N6-异戊烯基腺嘌呤、尿嘧啶-5-羟乙酸甲酯、尿嘧啶-5-羟乙酸、羟丁氧基核苷、假尿嘧啶、Q核苷、2-硫胞嘧啶、5-甲基-2-硫尿嘧啶、2-硫尿嘧啶、4-硫尿嘧啶、5-甲基尿嘧啶、N-尿嘧啶-5-羟乙酸甲酯、2,6-二氨基嘌呤以及2'-修饰的类似物,如(但不限于)O-甲基、氨基-以及荧光修饰的类似物。用2'-氟(2'-F)嘧啶修饰的抑制性RNA似乎在体外具备有利的性质。此外,一份最近的报导表明了
2'-F修饰的siRNA在细胞培养物中与含有2'-OH的siRNA相比具有增强的活性。2'-F修饰的siRNA在小鼠中是功能性的,但其相较于2'-OH siRNA未必具有增强的细胞内活性。
[0129] 在一些实施例中,核酸包括一或多种糖部分修饰,包括(但不限于)2'-O-氨基乙氧基、2'-O-氨基乙基(2'-OAE)、2'-O-甲氧基、2'-O-甲基、2-胍基乙基(2'-OGE)、2'-O,4-C-亚甲基(LNA)、2'-O-(甲氧基乙基)(2'-OME)以及2'-O-(N-(甲基)乙酰胺基)(2'-OMA)。
[0130] 基因疗法的方法通常依赖于将会改变细胞基因型的核酸分子引入细胞中。核酸分子的引入可经由基因重组来矫正、置换或以其它方式改变内源性基因。方法可包括引入缺陷基因、异源基因或小核酸分子(如寡核苷酸)的整个置换拷贝。举例来说,矫正性基因可被引入宿主基因组内的非特定位置。这一方法通常需要将置换基因引入细胞中的递送系统,如基因工程化的病毒载体。
[0131] 构建含有基因序列和适当转录和翻译控制元件的表达载体的方法为本领域中所熟知。这些方法包括体外重组DNA技术、合成技术以及体内基因重组。表达载体通常含有用于翻译和/或转录所插入编码序列的调节性序列必需元件。举例来说,编码序列优选地可操作地连接于启动子和/或增强子以帮助控制所需基因产物的表达。根据预定基因表达控制类型,生物技术中所用的启动子属于不同类型。其通常可分为组成性启动子、组织特异性或发展阶段特异性启动子、诱导型启动子以及合成启动子。
[0132] 病毒载体包括腺病毒、腺病毒相关病毒、疱疹病毒、牛痘病毒、脊髓灰质炎病毒、AIDS病毒、神经元营养病毒、辛德毕斯病毒(Sindbis)以及其它RNA病毒,包括具有HIV主链的这些病毒。还适用的是与这些病毒具有共同的使其适于用作载体的性质的任何病毒家族。通常,病毒载体含有非结构性早期基因、结构性晚期基因、RNA聚合酶III转录物、复制和壳体化必需的反向末端重复序列以及控制病毒基因组的转录和复制的启动子。当被工程化为载体时,通常要去除病毒的一或多个早期基因,并将基因或基因/启动子盒插入到病毒基因组中代替被去除的病毒DNA。
[0133] 经由目标重组(如同源重组(HR))的基因靶向是用于基因矫正的另一策略。在目标基因座处的基因矫正可利用与目标基因同源的供体DNA片段介导(胡(Hu)等人,分子生物技术(Mol.Biotech.),29:197-210(2005);奥尔森(Olsen)等人,基因医学杂志(J.Gene Med.),7:1534-1544(2005))。靶向重组的一种方法包括使用三链形成寡核苷酸(TFO),所述寡核苷酸作为第三条链以序列特异性方式结合于双链DNA中的同型嘌呤/同型嘧啶位点。三链形成寡核苷酸可与双链或单链核酸相互作用。当三链分子与目标区域相互作用时,形成一种称为三链的结构,其中取决于沃森-克里克(Watson-Crick)和胡思町(Hoogsteen)碱基配对两者存在形成复合体的三条DNA链。三链分子是优选的,因为其可以高亲和力和特异性-6 -8 -10 -12结合目标区域。优选的是三链形成分子以低于10 、10 、10 或10 的Kd结合目标分子。
[0134] 使用三链形成寡核苷酸(TFO)和肽核酸(PNA)用于靶向基因疗法的方法描述于美国公开申请案第20070219122号中,且其用于治疗感染性疾病(如HIV)的用途描述于美国公开申请案第2008050920号中。三链形成分子还可以是尾夹肽核酸(tcPNA),如美国公开申请案第2011/0262406号中所述的那些。高度稳定的PNA:DNA:PNA三链结构可通过用两条PNA链对双链DNA进行链侵入来形成。在这一复合体中,PNA/DNA/PNA三链螺旋部分和PNA/DNA双链部分均产生富嘧啶三链螺旋的移位,产生改变的结构,已展示所述结构强烈激起核苷酸切除修复通路并激活用于以供体寡核苷酸重组的位点。两条PNA链还可以连接在一起以形成双PNA分子。三链形成分子在与一或多种提供校正的序列的供体寡核苷酸组合使用时适用于诱导哺乳动物细胞中的位点特异性同源重组。供体寡核苷酸可系栓于三链形成分子或可与三链形成分子分离。供体寡核苷酸可相对于目标双链DNA含有至少一个核苷酸突变、插入或缺失。
[0135] 双重双链形成分子(如一对假互补寡核苷酸)还可诱导在染色体位点以供体寡核苷酸重组。假互补寡核苷酸在靶向基因疗法中的用途描述于美国公开申请案第2011/0262406号中。假互补寡核苷酸是互补寡核苷酸,其含有一或多个修饰使得其例如由于位阻而并不彼此识别或彼此杂交,但每一者可在目标位点处识别互补核酸链并杂交于互补核酸链。在一些实施例中,假互补寡核苷酸是假互补肽核酸(pcPNA)。相较于在目标双链DNA中需要聚嘌呤序列的诱导重组如三螺旋寡核苷酸和双肽核酸的方法,假互补寡核苷酸可更有效并提供增大的灵活性。
[0136] 2.诊断剂
[0137] 示例性诊断物质包括顺磁性分子、荧光化合物、磁性分子以及放射性核素。适合的诊断剂包括(但不限于)x射线成像剂和造影剂。放射性核素也可用作成像剂。其它适合的造影剂的实例包括气体或气体发射性化合物(其是不透射线的)。纳米粒子可进一步包括适用于测定所投与粒子位置的试剂。适用于这一目的的试剂包括荧光标记、放射性核素以及造影剂。
[0138] 对于一或多种治疗剂、防治剂和/或诊断剂被囊封在聚合纳米粒子内和/或与纳米粒子表面缔合的那些实施例,药物负载量百分比为约1重量%到约80重量%,约1重量%到约50重量%,优选地约1重量%到约40重量%,更优选地约1重量%到约20重量%,最优选地约1重量%到约10重量%。以上范围包括从1%到80%的所有值在内。对于试剂与粒子表面缔合的那些实施例,负载量百分比可更高,因为药物的量不受囊封方法限制。在一些实施例中,待递送药剂可囊封在纳米粒子内且与粒子表面缔合。还可并入营养药剂。这些营养药剂可为维生素、如钙或生物素的补充剂或如植物提取物或植物激素的天然成分。
[0139] E.粒子性质
[0140] 1.表面电荷和粒径
[0141] 为了有助于其通过粘液扩散,本文中所述的纳米粒子通常具有接近中性的表面电荷。在某些实施例中,纳米粒子的ζ-电位在约10mV与约-10mV之间,优选地在约5mV与约-5mV之间,优选地在约3mV与约-3mV之间,更优选地在约2mV与约-2mV之间。如上所论述,本文中所述粒子含有一或多种低分子量乳化剂。乳化剂可为不带电的,在这种情况下乳化剂对粒子表面电荷几乎不具有或不具有作用。然而,在一些情况下,乳化剂带正电荷或带负电荷。在这些实施例中,表面改变材料(例如PEG)必须以足够的密度存在以形成遮蔽带正电荷或带负电荷乳化剂的冠环,产生有效不带电的表面。
[0142] 虽然本文中所述粒子被称为纳米粒子,且因此平均直径通常在1nm到(但不包括)约1微米范围内,更优选地为约5nm到约500nm,最优选地为约5nm到约100nm。在某些实施例中,粒子的平均直径形成约100nm到约150nm。然而,可制备大小在微米范围内的粒子。用于制备粒子的条件和/或材料可改变以改变粒子的大小。
[0143] 在某些实施例中,纳米粒子在4℃下雾化或储存至少1个月、更优选至少2个月、最优选至少3个月后保持其粒径和ζ-电位。
[0144] 2.乳化剂对转运能力的作用
[0145] 在一些实施例中,粒子经投与以渗透粘液以用于对黏膜的药物递送。本文中所述粒子含有可增强通过粘液的转运的表面改变材料。举例来说,含PEG的嵌段共聚物可自装配,从而在利用乳化方法形成的乳液小滴表面上形成致密、粘惰性PEG涂层,但只是在使用低分子量(MW)乳化剂代替常规较高重量或高重量乳化剂(如PVA)的时候。相对于用高MW乳化剂制备的纳米粒子,在1s的时标下,低MW乳化剂在CVM中纳米粒子的均方位移()方面产生平均数千倍的增大。
[0146] 另外,此处描述的粒子以比相同粒子在水中慢不到10倍的有效速度渗透CVM。举例来说,还评估了含PEG的二嵌段共聚物、聚(乳酸)-b-PEG5k(PLA-PEG5k,Mn约95kDa)以及聚(ε-己内酯)-b-PEG5k(PCL-PEG5k,Mn约78kDa)。由这两种聚合物和PVA制备的纳米粒子固定在CVM中,同时针对使用低MW乳化剂CHA制得的纳米粒子观察到快速粘液渗透,其中有效扩散率类似于针对PLGA-PEG5k纳米粒子测量的那些。
[0147] 在一些实施例中,本文中所述粒子(用低分子量乳化剂制备)展现出比用PVA制备的粒子大至少500、1000、1500、2000、2500、3000、3500、4000、4500、5000、5500、6000、7000、8000、9000或10000倍的转运速率和/或展现出比相同粒子在水中慢不到25、20、19、18、17、
16、15、14、13、12、11、10、9、8、7、6、5、4或3倍的有效速度。
[0148] 在不存在PEG的情况下,PLGA/CHA纳米粒子具有高度阴离子性表面电荷且为粘膜粘附剂。相比之下,粘液渗透性PLGA-PEG5k/CHA纳米粒子的表面电荷接近中性,表明形成遮蔽PLGA和CHA的负电荷的致密PEG涂层。低MW乳化剂的浓度对纳米粒子表面电荷和粘液渗透性质不具有显著作用,很可能因为PEG冠环完全遮蔽粒子表面上的这些分子。
[0149] 另外,与乳化剂相关的固有电荷(DSS和CHA带负电荷,CTAB带正电荷,皂苷、维生素E TPGS、TWEEN20、TWEEN80以及SE带中性电荷)对表面电荷和粘液渗透性质几乎不具有或不具有作用,进一步支持了PEG冠环在遮蔽粒子表面上这些低MW乳化剂分子方面的作用。
[0150] 乳化剂的选择还影响了在乳化过程期间PEG刷子形成的程度。举例来说,虽然PLGA-PEG5k/PVA纳米粒子和PLGA-PEG5k/CHA纳米粒子均具有接近中性的表面电荷,但仅CHA调配物为粘液渗透性的。PVA和PEMA与其它乳化剂不同,因为其含有经亲水性侧基装饰的线性疏水性主链。有可能的是当PVA或PEMA使油/水界面稳定时,疏水性聚合物主链可多价附着于油/水界面,在所述界面处其与突出的PEG刷子紧密接触。因此,PVA和PEMA可破坏粒子表面上PEG分子的构造,由此使粒子变得粘膜粘附。在PLGA-PEG5k/PEMA纳米粒子情况下,负表面电荷(-42mV)表明PEG涂层的破坏,因为电荷很可能来源于表面上暴露的PEMA分子。
[0151] 然而,并非所有低MW乳化剂适用于制备MPP。举例来说,Cremophore EL、TWEEN80、维生素E TPGS、PLURONIC F127和F68不能使乳液小滴在粒子制备过程中完全稳定,引起不同程度的较大聚集体形成。虽然由此制备的非聚集的纳米粒子部分为粘液渗透性,但纳米粒子产率低到30%。因此,通过乳化方法从含PEG的嵌段共聚物制造MPP的能力决定性地依赖于乳化剂的MW和乳化能力两者。乳化剂的乳化能力通过在含有1%乳化剂的水相中制备的非聚集的PLGA-PEG纳米粒子的百分比估算。乳化剂必须强到足以使乳液小滴稳定,但小到足以在粒子表面处被PEG冠环完全遮蔽。
[0152] 通过乳化方法制备的具有广泛范围PEG MW(1、2、5以及10kDa)的PLGA-PEG/CHA纳米粒子均快速渗透粘液。纳米粒子表面电荷与PEG MW成反比且在-18mV(1kDa)到-2.3mV(10kDa)之间变化。利用1H NMR测量的表面PEG密度[Γ](每100平方纳米PEG数目)随PEG MW增大而减小。然而,表面PEG密度与形成刷子样PEG涂层所需的理论PEG密度[Γ*]的比率[Γ/Γ*]大于2,与PEG MW无关,指示在PLGA-PEG(1-10kDa)/CHA纳米粒子表面上存在致密的刷子样PEG涂层。在粒子表面上形成致密的PEG刷子似乎为粘液渗透所需的。
[0153] 确认的是疏水性和亲水性药物均可有效囊封到PLGA-PEG MPP中。两种模型化合物:姜黄素(一种疏水性药物(MW=368Da))和BSA(一种亲水性蛋白质(MW=66kDa))分别使用o/w单一乳液囊封到PLGA-PEG5k/CHA纳米粒子中和w/o/w双重乳液囊封到PLGA-PEG5k/皂苷纳米粒子中。通过使用低MW乳化剂将疏水性姜黄素和亲水性BSA两者囊封到MPP中的效率类似于通过乳化方法使用PVA用常规粒子(CP)实现的效率。
[0154] 负载有姜黄素和BSA的纳米粒子在τ=ls下以比在水中慢仅6和36倍的速率在粘液中快速扩散。另一方面,用PVA制备的纳米粒子固定在CVM中,其中转运速率比在水中慢超过2,000倍。预计实质性部分(分别达到40%和30%姜黄素-MPP和BSA-MPP)在60min内生理学上渗透厚粘液层,而预计<1%的包衣有PVA的纳米粒子会如此。
[0155] III.医药组合物
[0156] 本文中所述的调配物在适于投与粘膜表面的医药载剂中含有有效量的纳米粒子。调配物可肠胃外(例如通过注射或输注)、局部(例如到眼睛)或通过经肺投与来投与。
[0157] A.经肺调配物
[0158] 用于向患者经肺投与活性剂的医药调配物和方法为本领域中已知。
[0159] 呼吸道为涉及大气与血流之间气体交换的结构。呼吸道涵盖上气道,包括口咽和喉;接着为下气道,其包括接着分支成支气管和细支气管的气管。上气道和下气道称作传导气道。末端细支气管接着分成呼吸细支气管,其接着导向最终呼吸区、肺泡或肺深处,其中发生气体交换。
[0160] 调配物可分成干粉调配物和液体调配物。干粉和液体调配物均可用于形成气溶胶调配物。如本文所用的术语气溶胶是指粒子细雾的任何制剂,其可在溶液或悬浮液中,无论其是否使用推进剂制造。
[0161] 1.干粉调配物
[0162] 干粉调配物为细粉状固体调配物,其含有适用于经肺投与的纳米粒子载体。干粉调配物至少包括一或多种适用于经肺投与的纳米粒子载体。所述干粉调配物可通过经肺吸入来投与患者而不利用除空气或适合推进剂以外的任何载体。
[0163] 在其它实施例中,干粉调配物含有一或多种纳米粒子基因载体以及医药学上可接受的载剂。在这些实施例中,纳米粒子基因载体和医药载剂可形成到纳米或微米粒子中以用于递送到肺。
[0164] 医药载剂可包括填充剂或脂质或表面活性剂。天然表面活性剂如二棕榈酰磷脂酰胆碱(DPPC)为最优选的。合成和动物来源的肺表面活性剂包括:
[0165] 合成肺表面活性剂
[0166] Exosurf-一种作为展布剂加入的DPPC与十六醇和泰洛沙泊(tyloxapol)的混合物[0167] Pumactant(人工肺扩张化合物或ALEC)-一种DPPC和PG的混合物
[0168] KL-4-由DPPC、棕榈酰基-油酰基磷脂酰甘油以及棕榈酸组成,与模拟SP-B结构特征的21个氨基酸合成肽组合。
[0169] Venticute-DPPC、PG、棕榈酸以及重组SP-C
[0170] 动物来源的表面活性剂
[0171] Alveofact-提取自母牛肺灌洗液
[0172] Curosurf-提取自从切碎的猪肺获得的材料
[0173] Infasurf-提取自小牛肺灌洗液
[0174] Survanta-提取自切碎的母牛肺,具有另外的DPPC、棕榈酸以及棕榈精
[0175] Exosurf、Curosurf、Infasurf以及Survanta为当前FDA批准用于在美国使用的表面活性剂。
[0176] 医药载剂还可包括一或多种稳定剂或分散剂。医药载剂还可包括一或多种pH值调节剂或缓冲剂。适合的缓冲剂包括由有机酸和碱制备的有机盐,如柠檬酸钠或抗坏血酸钠。医药载剂还可包括一或多种盐,如氯化钠或氯化钾。
[0177] 干粉调配物通常通过将一或多种纳米粒子载体与一或多种医药学上可接受的载剂掺合来制备。任选地,另外的活性剂可并入如下所论述的混合物中。混合物接着使用本领域中已知的技术形成到适用于经肺投与的粒子中,所述技术如冻干、喷雾干燥、团聚、喷涂、凝聚、低温浇铸、碾磨(例如空气磨碎机(喷射研磨)、球磨)、高压均质化和/或超临界流体结晶。
[0178] 可基于所需粒径、粒径分布以及调配物所需的粒子形态选择适当的粒子形成方法。在一些情况下,选择粒子形成方法以便制造具有所需粒径、粒径分布的粒子群体以用于经肺投与。或者,粒子形成方法可制造粒子群体,具有所需粒径、粒径分布以用于经肺投与的粒子群体例如通过筛选与所述粒子群体分离。
[0179] 本领域中已知粒子形态影响粒子渗透到肺中的深度。因此,将干粉调配物加工成具有适当质量中值空气动力学直径(MMAD)、振实密度以及表面粗糙度的粒子以实现一或多种活性剂到所需肺区域的递送。举例来说,优选的用于递送到肺深处的粒子形态为本领域中已知,且例如描述于颁予凡贝维(Vanbever)等人的美国专利第7,052,678号中。
[0180] 质量中值空气动力学直径(MMAD)大于约5微米的粒子通常并不到达肺;相反,其倾向于撞击咽喉后部且被吞咽。直径约为3到约5微米的粒子足够小从而到达上部到中部肺区域(传导气道),但对于到达肺泡可能过大。较小粒子(即,约0.5到约3微米)能够有效地到达肺泡区域。直径小于约0.5微米的粒子还可通过沉降而沉积在肺泡区域中。
[0181] 有效实现递送到肺泡区域的确切粒径范围将取决于若干因素,包括所递送粒子的振实密度。一般说来,随着振实密度减小,能够有效到达肺的肺泡区域的粒子的MMAD增大。因此,在具有低振实密度的粒子的情况下,直径为约3到约5微米、约5到约7微米或约7到约
9.5微米的粒子可有效递送到肺。可计算用于在肺中最大沉积的优选空气动力学直径。参见,例如颁予凡贝维等人的美国专利第7,052,678号。
[0182] 微米粒子无法扩散通过粘液,即使其表面是粘抗性的。然而,粘液渗透性粒子可囊封在微米粒子中以撞击上肺,且随后释放纳米粒子。在一些实施例中,干粉调配物由多个粒子组成,所述粒子的中值质量空气动力学直径在约0.05到约10微米之间,更优选地在约0.05微米到约7微米之间,最优选地在约0.05到约5微米之间。在一些实施例中,干粉调配物由多个粒子组成,所述粒子的中值质量空气动力学直径在约0.05微米到约3微米之间,更优选地在约0.05微米到约1微米之间,更优选地在约0.05微米到约0.7微米之间。在一些实施例中,干粉调配物由多个粒子组成,所述粒子的中值质量空气动力学直径在约3到约5微米之间。在一些实施例中,干粉调配物由多个粒子组成,所述粒子的中值质量空气动力学直径在约5到约7微米之间。在一些实施例中,干粉调配物由多个粒子组成,所述粒子的中值质量空气动力学直径在约7到约9.5微米之间。
[0183] 在一些情况下,可能存在递送直径大于约3微米的粒子的优势。肺泡巨噬细胞对粒子的吞噬作用由于粒径增大超过约3微米而突然地减小。川口H(Kawaguchi,H)等人,生物材料(Biomaterials)7:61-66(1986);克雷尼斯L.J.(Krenis,L.J.)和施特劳斯B.(Strauss,B.),实验生物学与医学学会学报(Proc.Soc.Exp.Med.),107:748-750(1961);以及鲁特S.(Rudt,S.)和穆勒R.H(Muller,R.H),控制释放杂志(J.Contr.Rel),22:263-272(1992)。通过投与空气动力体积大于3微米的粒子,由肺泡巨噬细胞进行的吞噬吞没以及从肺的清除可减到最少。
[0184] 在一些实施例中,干粉调配物中的至少约80%、更优选地至少约90%、最优选地至少约95%粒子具有小于10、9、8、7、6或5微米的空气动力学直径。在一些实施例中,干粉调配物中的至少约80%、更优选地至少约90%、最优选地至少约95%粒子具有大于约0.03微米的空气动力学直径。
[0185] 在一些实施例中,干粉调配物中的至少约80%、更优选地至少约90%、最优选地至少约95%粒子的空气动力学直径大于约0.03微米且小于约10微米,更优选地大于约0.03微米且小于约7微米,最优选地大于约0.03微米且小于约5微米。在一些实施例中,干粉调配物中的至少约80%、更优选地至少约90%、最优选地至少约95%粒子的空气动力学直径大于约0.03微米且小于约3微米。在一些实施例中,干粉调配物中的至少约80%、更优选地至少约90%、最优选地至少约95%粒子的空气动力学直径大于约0.03微米且小于约5微米。在一些实施例中,干粉调配物中的至少约80%、更优选地至少约90%、最优选地至少约95%粒子的空气动力学直径大于约0.03微米且小于约7微米。在一些实施例中,干粉调配物中的至少约80%、更优选地至少约90%、最优选地至少约95%粒子的空气动力学直径大于约0.03微米且小于约9.5微米。
[0186] 在一些实施例中,粒子的振实密度小于约0.4g/cm3,更优选地小于约0.25g/cm3,最3
优选地小于约0.1g/cm。可有助于低振实密度的特征包括不规则表面质地和多孔结构。
[0187] 在一些情况下,粒子的形状是球形或卵形的。粒子可具有平滑或粗糙的表面质地。粒子还可包衣有聚合物或其它适合的材料以控制一或多种活性剂在肺中的释放。
[0188] 干粉调配物可使用本领域中已知的适合方法以干粉状投与。或者,干粉调配物可悬浮于如下所述的液体调配物中,且使用本领域中已知的用于递送液体调配物的方法投与肺。
[0189] 2.液体调配物
[0190] 液体调配物含有悬浮于液体医药载剂中的一或多种纳米粒子载体。
[0191] 适合的液体载剂包括(但不限于)蒸馏水、去离子水、纯水或超纯水、盐水以及含有盐和/或缓冲剂的其它生理学上可接受的水溶液(如磷酸盐缓冲盐水(PBS)、林格氏溶液(Ringer's solution)以及等渗氯化钠),或任何适用于投与动物或人类的其它水溶液。
[0192] 优选地,液体调配物相对于生理体液等渗且具有大致相同的pH值,例如在约pH4.0到约pH7.4范围内,更优选地在约pH6.0到pH7.0范围内。液体医药载剂可包括一或多种生理学上可相容的缓冲液,如磷酸盐缓冲液。本领域普通技术人员可容易地确定用于经肺投与的水溶液的适合的盐水含量和pH值。
[0193] 液体调配物可包括一或多种悬浮剂,如纤维素衍生物、海藻酸钠、聚乙烯吡咯烷酮、黄蓍胶或卵磷脂。液体调配物还可包括一或多种防腐剂,如对羟基苯甲酸乙酯或对羟基苯甲酸正丙酯。
[0194] 在一些情况下,液体调配物可含有一或多种溶剂,所述溶剂为低毒性有机(即非水)第三类残留溶剂,如乙醇、丙酮、乙酸乙酯、四氢呋喃、乙基醚以及丙醇。这些溶剂可基于其易于气溶胶化调配物的能力选择。液体调配物中包括的任何这种溶剂不应与液体调配物中存在的一或多种活性剂不利地反应。溶剂应具有充分地挥发性以能够形成溶液或悬浮液的气溶胶。其它溶剂或气溶胶化剂(如氟利昂(freon)、乙醇、乙二醇、聚乙二醇或脂肪酸)也可根据需要包括于液体调配物中以增大挥发性和/或改变溶液或悬浮液的气溶胶化行为。
[0195] 液体调配物还可含有少量聚合物、表面活性剂或本领域人员所熟知的其它赋形剂。在这种情况下,“少量”意指不存在可不利地影响一或多种活性剂在肺中吸收的赋形剂。
[0196] 3.气溶胶调配物
[0197] 上述干粉和液体调配物可用于形成气溶胶调配物以用于经肺投与。用于将治疗剂递送到呼吸道的气溶胶为本领域中已知。如本文所用的术语气溶胶是指悬浮于气体中的固体或液体粒子细雾的任何制剂。在一些情况下,气体可为推进剂;然而,这不是必需的。气溶胶可使用许多标准技术制造,包括如超声波处理或高压处理。
[0198] 优选地,如上所述的干粉或液体调配物使用一或多种推进剂调配成气溶胶调配物。适合的推进剂包括空气、烃(如戊烷、异戊烷、丁烷、异丁烷、丙烷以及乙烷)、二氧化碳、氯氟碳化物、碳氟化合物以及其组合。适合的碳氟化合物包括含有1-6个氢的碳氟化合物(如CHF2CHF2、CF3CH2F、CH2F2CH3以及CF3CHFCF3)以及氟化醚(如CF3-O-CF3、CF2H-O-CHF2以及CF3-CF2-O-CF2-CH3)。适合的碳氟化合物还包括全氟化碳,如1-4碳全氟化碳,包括CF3CF3、CF3CF2CF3以及CF3CF2CF2CF3。
[0199] 优选地,推进剂包括(但不限于)一或多种氢氟烷烃(HFA)。适合的HFA推进剂包括(但不限于)1,1,1,2,3,3,-七氟-正丙烷(HFA227)、1,1,1,2-四氟乙烷(HFA134)1,1,1,2,253,3,3-七氟丙烷(推进剂227)或这些推进剂的任何混合物。
[0200] 优选地,一或多种推进剂具有足够蒸气压以使其有效成为推进剂。优选地,选择一或多种推进剂使得混合物的密度匹配气溶胶调配物中的粒子密度,以便使粒子在气溶胶调配物中的沉降或乳油化减到最少。推进剂优选地以足以从气溶胶罐推进多个所选剂量的气溶胶调配物的量存在。
[0201] 4.用于经肺投与的装置
[0202] 在一些情况下,装置用于将调配物投与肺。适合的装置包括(但不限于)干粉吸入器、加压定剂量吸入器、喷雾器以及电流体动力学气溶胶装置。
[0203] 吸入可经由患者的鼻和/或口进行。投与可通过在吸入的同时自身投与调配物或通过经由呼吸器将调配物投与依靠呼吸器的患者来进行。
[0204] 干粉吸入器
[0205] 上述干粉调配物可使用干粉吸入器(DPI)投与患者的肺。DPI装置通常使用如气体喷出的机制以在容器内部形成大量干粉,所述干粉可接着被患者吸入。
[0206] 在干粉吸入器中,待投与剂量以不加压的干粉形式储存,且在致动吸入器时,粉末粒子被个体吸入。在一些情况下,压缩气体(即推进剂)可用于分配粉末,与加压定剂量吸入器(pMDI)类似。在一些情况下,DPI可经呼吸致动,意指气溶胶明确回应于吸气而形成。通常,每次吸入干粉吸入器投与小于数十毫克的剂量以避免激发咳嗽。
[0207] DPI经由各种机械手段起作用以将调配物投与肺。在一些DPI中,在干粉调配物上的刮刀刀片或闸门滑动片含有于贮器中,将调配物拣选到流径中,由此患者可在单次呼吸中吸入粉末。在其它DPI中,干粉调配物以预成形剂型封装,如泡罩、片剂剂型、片剂或囊形片,其经刺穿、压碎或以其它方式拆封以将干粉调配物释放到流径中以用于后续吸入。其它DPI将干粉调配物释放到腔室或胶囊中,且使用机械或电搅拌器以使干粉调配物保持悬浮于空气中直到患者吸入为止。
[0208] 干粉调配物可以各种形成封装,如松散粉末、饼状物或用于插入DPI贮器中的于贮器。
[0209] 用于投与上述调配物的适合的DPI的实例包括 吸入器(特拉华州维明顿的阿斯利康公司(Astrazeneca,Wilmington,Del.))、 吸入器(英国诺丁汉郡
雷丁顿的威达公司(Innovata,Ruddington,Nottingham,UK))、 吸入器(英国米德
尔塞克斯郡格林福德的葛兰素公司(Glaxo,Greenford,Middlesex,UK))、 (奥立
龙公司(Orion),Expoo,FI)、 吸入器(纽约州纽约的辉瑞公司(Pfizer,New York,N.Y.))、 吸入器(新泽西州蒙茅斯章克申的微剂量公司(Microdose,Monmouth 
Junction,N.J.))以及 吸入器(加利福尼亚州圣地牙哥的德韧公司(Dura,San 
Diego,Calif.))。
[0210] 加压定剂量吸入器
[0211] 上述液体调配物可使用加压定剂量吸入器(pMDI)投与患者的肺。
[0212] 加压定剂量吸入器(pMDI)通常包括至少两个组件:其中将液体调配物与一或多种推进剂组合保持在压力下的罐以及用于保持和致动罐的容器。罐可含有单个或多个剂量的调配物。罐可包括阀,通常为计量阀,罐的内含物可从所述计量阀排放。气溶胶化药物通过以下方式从pMDI分配:对罐施加力以将其推到容器中,由此打开阀且使药物粒子经由容器出口从阀输送。在从罐排放后,将液体调配物雾化,形成气溶胶。
[0213] pMDI通常使用一或多种推进剂以对罐的内含物加压且推进液体调配物离开容器出口,形成气溶胶。可使用任何适合的推进剂,包括上述那些。推进剂可采用各种形成。举例来说,推进剂可为压缩气体或液化气体。氯氟碳化物(CFC)曾经常用作液体推进剂,但现已被禁止。其已被现在广泛认可的氢氟烷烃(HFA)推进剂替代。
[0214] pMDI可获自许多供应商,包括3M公司(3M Corporation)、安内特公司(Aventis)、勃林格殷格翰公司(Boehringer Ingleheim)、森林实验室(Forest Laboratories)、葛兰素威康公司(Glaxo-Wellcome)、先灵葆雅公司(Schering Plough)以及维克图拉公司(Vectura)。在一些情况下,患者通过与吸气配合从pMDI手动排放气溶胶化调配物来投与气溶胶化调配物。以这一方式,气溶胶化调配物挟带在吸入的空气流内且输送到肺。
[0215] 在其它情况下,可使用在感测到吸入时同时排放调配物剂量的呼吸致动的触发物,如包括在 吸入器(加利福尼亚州山景城的MAP医药公司(MAP Pharmaceuticals,Mountain View,Calif))中的触发物。在使用者开始吸气时排放气溶胶调配物的这些装置称为呼吸致动的加压定剂量吸入器(baMDI)。
[0216] 喷雾器
[0217] 上述液体调配物也可使用喷雾器投与。喷雾器是液体气溶胶发生器,其将上述液体调配物(通常为基于水溶液的组合物)转化成小液滴的雾或云,所述小液滴优选地具有小于5微米质量中值空气动力学直径的直径,其可被吸入到下呼吸道中。这一过程称为雾化。在吸入气溶胶云时,液滴将一或多种活性剂携带到鼻、上气道或肺深处。任何类型的喷雾器均可用于将调配物投与患者,包括(但不限于)气动(喷气式)喷雾器和电动机械式喷雾器。
[0218] 气动(喷气式)喷雾器使用加压气体供应作为驱动力以用于雾化液体调配物。压缩气体经由喷嘴或喷射器递送以形成低压域,所述低压域挟带周围的液体调配物并将其剪切成薄膜或纤丝。所述膜或纤丝是不稳定的并分解为小液滴,所述小液滴由流入到吸入的呼吸中的压缩气体携带。插入液滴卷流中的挡扳筛选出大液滴并使其返回主体液体贮器。气动喷雾器的实例包括(但不限于)PARI LC PARI LC Devilbiss 以及Boehringer Ingelheim
[0219] 电动机械式喷雾器使用电生成的机械力来雾化液体调配物。电动机械驱动力可例如通过在超声波频率下振荡液体调配物或通过迫使主体液体通过薄膜中的小孔洞来施加。所述力产生薄液膜或纤丝流,其分解为小液滴以形成可在吸入流中挟带的低速气溶胶流。
[0220] 在一些情况下,电动机械式喷雾器是超声波喷雾器,其中液体调配物与在超声波范围的频率下振荡的振荡器结合。所述结合通过使液体与振荡器(如保持杯中的板或环)直接接触或通过将大液滴置放在固体振荡投射器(喇叭)上来实现。振荡产生圆形支撑膜,所述膜在其边缘分解成液滴以雾化液体调配物。超声波喷雾器的实例包括 Drive Medical Beetle Octive Tech 以及John Bunn
[0221] 在一些情况下,电动机械式喷雾器是筛网喷雾器,其中液体调配物被驱使通过具有直径在2到8微米范围内的小孔洞的筛网或膜,以产生薄纤丝,其分解成小液滴。在某些设计中,液体调配物通过以下方式被迫通过筛网:用螺线管活塞杆施加压力(例如 喷雾器);或将液体夹在压电振荡板与筛网之间,其产生摆动泵作用(例如或 喷雾器)。在其它情况下,筛网通过液体的直立柱来回振荡以将其泵送通过
孔洞。这种喷雾器的实例包括AeroNeb AeroNeb PARI Omron 以及
Aradigm
[0222] 电流体动力学气溶胶装置
[0223] 上述液体调配物也可使用电流体动力学(EHD)气溶胶装置投与。EHD气溶胶装置使用电能将液体药物溶液或悬浮液气溶胶化。EHD气溶胶装置的实例为本领域中已知。参见,例如颁予诺克斯(Noakes)等人的美国专利第4,765,539号和卡菲R.A(Coffee,R.A)的美国专利第4,962,885号。
[0224] 调配物的电化学性质可能是重要的参数以在用EHD气溶胶装置将液体调配物递送到肺时优化,且这种优化通常由本领域普通技术人员进行。
[0225] C.肠胃外调配物
[0226] 在一些实施例中,纳米粒子经调配以用于肠胃外递送,如注射或输注,以溶液或悬浮液形式。调配物可经由任何途径投与(如血流或直接投与待治疗的器官或组织)。在一些实施例中,纳米粒子针对眼睛的肠胃外调配物经调配。
[0227] 如本文所用的“肠胃外投与”意指通过除经由消化道或非侵入性局部或区域性途径以外的任何方法投与。举例来说,肠胃外投与可能包括静脉内、皮内、腹膜内、胸膜内、气管内、肌内、皮下、结膜下、通过注射和通过输注投与患者。
[0228] 肠胃外调配物可使用本领域中已知的技术制备为水性组合物。通常,所述组合物可制备为可注射调配物,例如溶液或悬浮液;适用于在注射之前在加入复原介质时制备溶液或悬浮液的固体形式;乳液,如油包水(w/o)乳液、水包油(o/w)乳液和其微乳液、脂质体或乳脂体。
[0229] 载剂可为溶剂或分散介质,其含有例如水;乙醇;一或多种多元醇(例如甘油、丙二醇以及液体聚乙二醇);油,如植物油(例如花生油、玉米油、芝麻油等)以及其组合。可例如通过使用包衣(如卵磷脂)、通过维持所需粒径(在分散液的情况下)和/或通过使用表面活性剂来维持适当的流动性。在许多情况下,将优选包括等渗剂,例如糖或氯化钠。
[0230] 呈游离酸或碱或其药理学上可接受的盐形式的活性化合物的溶液和分散液可在与一或多种医药学上可接受的赋形剂适当混合的水或另一溶剂或分散介质中制备,所述医药学上可接受的赋形剂包括(但不限于)表面活性剂、分散剂、乳化剂、pH值调节剂以及其组合。
[0231] 适合的表面活性剂可为阴离子性、阳离子性、两性或非离子性表面活性剂。适合的阴离子性表面活性剂包括(但不限于)含有羧酸根、磺酸根以及硫酸根离子的那些。阴离子性表面活性剂的实例包括长链烷基磺酸盐和烷基芳基磺酸盐的钠、钾、铵盐,如十二烷基苯磺酸钠;二烷基磺基琥珀酸钠,如十二烷基苯磺酸钠;二烷基磺基琥珀酸钠,如双-(2-乙基硫氧基)-磺基琥珀酸钠;以及烷基硫酸盐,如月桂基硫酸钠。阳离子性表面活性剂包括(但不限于)季铵化合物如苯扎氯铵、苄索氯铵、西曲溴铵、硬脂酰基二甲基苄基氯化铵、聚氧乙烯以及椰子胺。非离子性表面活性剂的实例包括乙二醇单硬脂酸酯、丙二醇肉豆蔻酸酯、单硬脂酸甘油酯、硬脂酸甘油酯、聚甘油-4-油酸酯、脱水山梨糖醇酰化物、蔗糖酰化物、PEG-150月桂酸酯、PEG-400单月桂酸酯、聚氧乙烯单月桂酸酯、聚山梨醇酯、聚氧乙烯辛基苯基醚、PEG-1000十六烷基醚、聚氧乙烯十三烷基醚、聚丙二醇丁基醚、 401、硬脂酰单异丙醇酰胺以及聚氧乙烯氢化牛油酰胺。两性表面活性剂的实例包括N-月桂基-β-丙氨酸钠、N-月桂基-β-亚氨基二丙酸钠、肉豆蔻酰两性乙酸酯、月桂基甜菜碱以及月桂基磺基甜菜碱。
[0232] 调配物可含有防腐剂以防止微生物生长。适合的防腐剂包括(但不限于)对羟基苯甲酸酯、氯丁醇、苯酚、山梨酸以及硫柳汞。调配物还可含有抗氧化剂以防止活性剂降解。
[0233] 调配物通常被缓冲成pH3-8以用于在复原时肠胃外投与。适合的缓冲液包括(但不限于)磷酸盐缓冲液、乙酸盐缓冲液以及柠檬酸盐缓冲液。
[0234] 水溶性聚合物通常用于调配物以用于肠胃外投与。适合的水溶性聚合物包括(但不限于)聚乙烯吡咯烷酮、葡聚糖、羧甲基纤维素以及聚乙二醇。
[0235] 无菌可注射溶液可通过以下方式制备:将呈所需量的活性化合物视需要与上列一或多种赋形剂一起并入适当溶剂或分散介质中,随后过滤灭菌。通常,分散液通过以下方式制备:将各种经灭菌的活性成分并入含有碱性分散介质和来自上文列举的那些的所需其它成分的无菌媒剂中。在使用无菌粉末制备无菌可注射溶液的情况下,优选制备方法为真空干燥和冷冻干燥技术,其由其先前无菌过滤溶液获得活性成分附加任何其它所需成分的粉末。粉末可以此方式制备使得粒子的性质为多孔的,这可增大粒子的溶解。制造多孔粒子的方法为本领域所熟知。
[0236] 用于眼投与的医药调配物优选地呈由一或多种聚合物-药物结合物形成的粒子的无菌水溶液或悬浮液的形式。可接受的溶剂包括例如水、林格氏溶液、磷酸盐缓冲盐水(PBS)以及等渗氯化钠溶液。调配物还可为于无毒性、肠胃外可接受的稀释剂或溶剂(如1,3-丁二醇)中的无菌溶液、悬浮液或乳液。
[0237] 在一些情况下,调配物以液体形式分布或封装。或者,用于眼投与的调配物可作为固体封装,例如通过适合的液体调配物的冻干来获得。固体可在投与之前用适当载剂或稀释剂复原。
[0238] 用于眼投与的溶液、悬浮液或乳液可用维持适用于眼投与的pH值所必需的有效量的缓冲液缓冲。适合的缓冲液为本领域普通技术人员所熟知,且适用的缓冲液的一些实例是乙酸盐、硼酸盐、碳酸盐、柠檬酸盐以及磷酸盐缓冲液。
[0239] 用于眼投与的溶液、悬浮液或乳液还可含有一或多种张力剂以调节调配物的等渗范围。适合的张力剂为本领域所熟知,且一些实例包括甘油、甘露糖醇、山梨糖醇、氯化钠以及其它电解质。
[0240] 用于眼投与的溶液、悬浮液或乳液还可含有一或多种防腐剂以防止眼用制剂的细菌污染。适合的防腐剂为本领域中已知,且包括聚六亚甲基双胍(PHMB)、苯扎氯铵(BAK)、稳定化氧氯络合物(或者称为 )、乙酸苯汞、氯丁醇、山梨酸、氯己定、苯甲醇、对羟基苯甲酸酯、硫柳汞以及其混合物。
[0241] 用于眼投与的溶液、悬浮液或乳液还可含有本领域已知的一或多种赋形剂,如分散剂、湿润剂以及悬浮剂。
[0242] D.局部调配物
[0243] 在其它实施例中,纳米粒子经调配以用于局部投与粘膜。适用于局部投与的剂型包括乳膏、软膏、油膏、喷雾剂、凝胶、洗剂、乳液、液体以及经皮贴片。调配物可经调配以用于经粘膜、经上皮、经内皮或经皮投与。组合物含有一或多种化学渗透增强剂、膜渗透剂、膜转运剂、润滑剂、表面活性剂、稳定剂以及其组合。
[0244] 在一些实施例中,纳米粒子可以液体调配物(如溶液或悬浮液)、半固体调配物(如洗剂或软膏)或固体调配物形式投与。在一些实施例中,纳米粒子被调配为液体,包括溶液和悬浮液,如滴眼剂,或调配为半固体调配物,如软膏或洗剂以用于局部施用到粘膜(如眼睛)或经阴道或经直肠。
[0245] 调配物可含有一或多种赋形剂,如润滑剂、表面活性剂、乳化剂、渗透增强剂等。
[0246] “润滑剂”是使皮肤软化或舒缓的外部施用的药剂,且通常为本领域中已知,且列于如“医药赋形剂手册(Handbook of Pharmaceutical Excipients)”,第4版,医药出版社(Pharmaceutical Press),2003的纲要中。这些润滑剂包括(但不限于)杏仁油、蓖麻油、长角豆提取物、十六醇十八醇混合物、十六烷醇、十六烷基酯蜡、胆固醇、棉籽油、环聚二甲基硅氧烷、乙二醇棕榈酰硬脂酸酯、甘油、单硬脂酸甘油酯、单油酸甘油酯、肉豆蔻酸异丙酯、棕榈酸异丙酯、羊毛脂、卵磷脂、轻质矿物油、中链三甘油酯、矿物油和羊毛脂醇、石蜡油、石蜡油和羊毛脂醇、大豆油、淀粉、十八烷醇、向日葵油、木糖醇以及其组合。在一个实施例中,润滑剂是硬脂酸乙基己酯和棕榈酸乙基己酯。
[0247] “表面活性剂”是降低表面张力且由此增强产物的乳化、发泡、分散、展布以及润湿性质的表面活性剂。适合的非离子性表面活性剂包括乳化蜡、单油酸甘油酯、聚氧乙烯烷基醚、聚氧乙烯蓖麻油衍生物、聚山梨醇酯、脱水山梨糖醇酯、苯甲醇、苯甲酸苯甲酯、环糊精、单硬脂酸甘油酯、泊洛沙姆、聚维酮以及其组合。在一个实施例中,非离子性表面活性剂是十八烷醇。
[0248] “乳化剂”是促进一种液体悬浮于另一液体中且促进油和水的稳定混合物或乳液形成的表面活性物质。常见乳化剂是:金属皂、某些动物和植物油以及各种极性化合物。适合的乳化剂包括阿拉伯胶、阴离子乳化蜡、硬脂酸钙、卡波姆、十六醇十八醇混合物、十六烷醇、胆固醇、二乙醇胺、乙二醇棕榈酰硬脂酸酯、单硬脂酸甘油酯、单油酸甘油酯、羟丙基纤维素、羟丙甲纤维素、羊毛脂、水合物、羊毛脂醇、卵磷脂、中链三甘油酯、甲基纤维素、矿物油和羊毛脂醇、磷酸二氢钠、单乙醇胺、非离子性乳化蜡、油酸、泊洛沙姆、泊洛沙姆、聚氧乙烯烷基醚、聚氧乙烯蓖麻油衍生物、聚氧乙烯脱水山梨糖醇脂肪酸酯、聚氧乙烯硬脂酸酯、海藻酸丙二醇酯、自乳化单硬脂酸甘油酯、柠檬酸钠脱水物、月桂基硫酸钠、脱水山梨糖醇酯、硬脂酸、向日葵油、黄蓍胶、三乙醇胺、三仙胶以及其组合。在一个实施例中,乳化剂是硬脂酸甘油酯。
[0249] 适合的渗透增强剂种类为本领域中已知且包括(但不限于)脂肪醇、脂肪酸酯、脂肪酸、脂肪醇醚、氨基酸、磷脂、卵磷脂、胆酸盐、酶、胺和酰胺、络合剂(脂质体、环糊精、改性纤维素以及二酰亚胺)、巨环(如巨环内酯)、酮、和酸酐和环状脲、表面活性剂、N-甲基吡咯烷酮和其衍生物、DMSO和相关化合物、离子化合物、氮酮和相关化合物、以及溶剂(如乙醇、酮、酰胺、多元醇(例如乙二醇))。这些种类的实例为本领域中已知。
[0250] i.洗剂、乳膏、凝胶、软膏、乳液以及发泡体
[0251] 如本文所用的“亲水性”是指具有易于与水相互作用的强极性基团的物质。
[0252] “亲脂性”是指对脂质具有亲和力的化合物。
[0253] “两亲性”是指组合有亲水性和亲脂性(疏水性)性质的分子。
[0254] 如本文所用的“疏水性”是指对水缺乏亲和力的物质;倾向于排斥水且不吸收水以及不溶解于水中或与水混合。
[0255] “凝胶”是其中分散相已与连续相合并从而产生半固体物质(如胶状物)的胶体。
[0256] “油”是含有至少95重量%亲脂性物质的组合物。亲脂性物质的实例包括(但不限于)天然存在的油和合成油、脂肪、脂肪酸、卵磷脂、三甘油酯以及其组合。
[0257] “连续相”是指其中悬浮有固体或分散有另一种液体的液滴的液体,且有时称为外相。这也指胶体的流体相,在所述流体相内分布有固体或流体粒子。如果连续相是水(或另一亲水性溶剂),那么水溶性或亲水性药物将溶解于连续相中(如与分散相对)。在多相调配物(例如乳液)中,不连续相悬浮或分散于连续相中。
[0258] “乳液”是含有均匀掺合在一起的不混溶的组分的混合物的组合物。在特定实施例中,不混溶的组分包括亲脂性组分和水性组分。乳液是一种液体以小球体形式分布在整个第二液体的主体中的制剂。所分散的液体是不连续相,且分散介质是连续相。在油是分散的液体且水溶液是连续相时,其称为水包油乳液,而在水或水溶液是分散相且油或含油物质是连续相时,其称为油包水乳液。油相和水相中的任一者或两者可含有一或多种表面活性剂、乳化剂、乳液稳定剂、缓冲剂以及其它赋形剂。优选的赋形剂包括表面活性剂,尤其非离子性表面活性剂;乳化剂,尤其乳化蜡;以及液体非挥发性非水性物质,尤其乙二醇,如丙二醇。油相可含有其它油性医药学上批准的赋形剂。举例来说,如羟基化蓖麻油或芝麻油的物质可作为表面活性剂或乳化剂用于油相中。
[0259] 乳液是一种液体以小球体形式分布在整个第二液体的主体中的制剂。所分散的液体是不连续相,且分散介质是连续相。在油是分散的液体且水溶液是连续相时,其称为水包油乳液,而在水或水溶液是分散相且油或含油物质是连续相时,其称为油包水乳液。油相可至少部分地由推进剂(如HFA推进剂)组成。油相和水相中的任一者或两者可含有一或多种表面活性剂、乳化剂、乳液稳定剂、缓冲剂以及其它赋形剂。优选的赋形剂包括表面活性剂,尤其非离子性表面活性剂;乳化剂,尤其乳化蜡;以及液体非挥发性非水性物质,尤其乙二醇,如丙二醇。油相可含有其它油性医药学上批准的赋形剂。举例来说,如羟基化蓖麻油或芝麻油的物质可作为表面活性剂或乳化剂用于油相中。
[0260] 乳液的子集是自乳化系统。这些药物递送系统通常是胶囊(硬壳或软壳),其包含分散或溶解于表面活性剂和亲脂液体(如油或其它水不混溶液体)的混合物中的药物。当胶囊暴露于水性环境且外部明胶壳溶解时,水性介质与胶囊内含物之间的接触立即产生极小的乳液小滴。这些通常是在胶束或纳米粒子的大小范围内。不需要混合力来产生乳液,因为这通常是乳液调配过程的情况。
[0261] “洗剂”是低到中等粘度的液体调配物。洗剂可含有细粉状物质,所述物质通过使用悬浮剂和分散剂而可溶于分散介质中。或者,洗剂可具有分散相液体物质,所述物质不与媒剂混溶且通常借助于乳化剂或其它适合的稳定剂分散。在一个实施例中,洗剂是呈乳液的形式,所述乳液的粘度在100与1000厘沲(centistoke)之间。洗剂的流动性允许在较宽表面区域上的快速和均匀的施用。洗剂通常意欲在皮肤上干燥,在皮肤表面上留下其医药组分的薄包被。
[0262] “乳膏”是“水包油”或“油包水型”的粘稠液体或半固体乳液。乳膏可含有乳化剂和/或其它稳定剂。在一个实施例中,调配物是呈乳膏形式,所述乳膏的粘度大于1000厘沲,通常在20,000-50,000厘沲范围内。乳膏相较于软膏通常是时间优选的,因为其通常易于展布且易于去除。
[0263] 乳膏与洗剂之间的差异是粘度,其取决于各种油的量/使用以及用于制备调配物的水的百分比。乳膏通常比洗剂浓稠,可具有各种用途且通常使用更多样化的油/黄油,取决于在皮肤上的所需作用。在乳膏调配物中,对于总共100%来说,水基百分比为约60%-75%,且油基为全部的约20%-30%,且其余百分比是乳化剂、防腐剂以及添加剂。
[0264] “软膏”是含有软膏基质和任选地一或多种活性剂的半固体制剂。适合的软膏基质的实例包括烃基质(例如石蜡油、白凡士林、黄色软膏以及矿物油);吸收基质(亲水性石蜡油、无水羊毛脂、羊毛脂以及冷膏);水可去除的基质(例如亲水性软膏)以及水溶性基质(例如聚乙二醇软膏)。糊状物通常与软膏不同,因为其含有较大百分比的固体。糊状物与用相同组分制备的软膏相比通常更具吸收性且较不油腻。
[0265] “凝胶”是半固体系统,其在液体媒剂中含有小或大分子的分散液,所述液体媒剂通过增稠剂或聚合物质溶解或悬浮于液体媒剂中的作用而变成半固体。液体可包括亲脂性组分,水性组分或两者。一些乳液可为凝胶或另外包括凝胶组分。然而,一些凝胶不为乳液,因为其并不含有不混溶组分的均质化掺合物。适合的胶凝剂包括(但不限于)改性纤维素,如羟丙基纤维素和羟乙基纤维素;卡波姆均聚物和共聚物;以及其组合。液体媒剂中的适合溶剂包括(但不限于)二乙二醇单乙醚、亚烷基二醇,如丙二醇;二甲基异山梨醇;乙醇,如异丙醇和乙醇。溶剂通常针对其溶解药物的能力加以选择。还可并入改善皮肤感觉和/或软化调配物的其它添加剂。所述添加剂的实例包括(但不限于)肉豆蔻酸异丙酯、乙酸乙酯、苯甲酸C12-C15烷酯、矿物油、角鲨烷、环聚二甲基硅氧烷、癸酸/辛酸三甘油酯以及其组合。
[0266] 发泡体由乳液以及气体推进剂组成。气体推进剂主要由氢氟烷烃(HFA)组成。适合的推进剂包括HFA,如1,1,1,2-四氟乙烷(HFA134a)和1,1,1,2,3,3,3-七氟丙烷(HFA227),但目前已批准或可经批准以用于医学用途的这些和其它HFA的混合物和掺合物是适合的。推进剂优选地不是在喷雾过程中可产生易燃或爆炸性蒸气的烃推进剂气体。另外,组合物优选地含有不挥发性醇,所述醇在使用过程中可产生易燃或爆炸性蒸气。
[0267] 缓冲剂用于控制组合物的pH值。优选地,缓冲剂将组合物从约4的pH值缓冲到约7.5的pH值,更优选地从约4的pH值缓冲到约7的pH值,且最优选地从约5的pH值缓冲到约7的pH值。在一个优选实施例中,缓冲剂是三乙醇胺。
[0268] 防腐剂可用于防止真菌和微生物生长。适合的抗真菌剂和抗微生物剂包括(但不限于)苯甲酸、对羟基苯甲酸丁酯、对羟基苯甲酸乙酯、对羟基苯甲酸甲酯、对羟基苯甲酸丙酯、苯甲酸钠、丙酸钠、苯扎氯铵、苄索氯铵、苯甲醇、氯化十六烷基吡啶、氯丁醇、苯酚、苯乙醇以及硫柳汞。
[0269] 在某些实施例中,合乎需要的可能是向有需要的患者提供一或多种那可汀(noscapine)类似物的连续递送。对于局部施用,可进行重复施用,或可使用贴片剂以在延长的时间段内提供那可汀类似物的连续投与。
[0270] E.肠内调配物
[0271] 适合的口服剂型包括片剂、胶囊、溶液、悬浮液、糖浆以及口含剂。片剂可使用本领域中熟知的压缩或模制技术制造。明胶或非明胶胶囊可制备为硬或软胶囊壳,其可使用本领域中熟知的技术囊封液体、固体以及半固体填充材料。
[0272] 调配物可使用一或多种医药学上可接受的赋形剂制备,包括稀释剂、防腐剂、粘合剂、润滑剂、崩解剂、膨润剂、填充剂、稳定剂以及其组合。
[0273] 赋形剂(包括增塑剂、色素、着色剂、稳定剂以及助流剂)还可用于形成经包衣组合物以用于肠内投与。延迟释放剂量调配物可如标准参考文献中所述制备,如“医药剂型片剂(Pharmaceutical dosage form tablets)”,利伯曼(Liberman)等人编(纽约,马塞尔德克尔公司,1989),“雷明顿-药学的科学和实践(Remington-The science and practice of pharmacy)”,第20版,马里兰州巴尔的摩的利平科特威廉姆斯和威尔金斯公司(Lippincott Williams&Wilkins,Baltimore,MD),2000以及“医药剂型和药物递送系统(Pharmaceutical dosage forms and drug delivery systems)”,第6版,安斯艾尔(Ansel)等人,(宾夕法尼亚州美迪亚(Media,PA):威廉姆斯和威尔金斯公司(Williams and Wilkins),1995)。这些参考文献提供了关于用于制备片剂和胶囊的赋形剂、材料、设备和工艺以及片剂、胶囊和颗粒的延迟释放剂型的信息。
[0274] 纳米粒子可经包衣,例如以当粒子已通过胃的酸性环境时延迟释放。适合的包衣材料的实例包括(但不限于)纤维素聚合物,如邻苯二甲酸乙酸纤维素、羟丙基纤维素、羟丙基甲基纤维素、羟丙基甲基纤维素邻苯二甲酸酯以及羟丙基甲基纤维素乙酸酯琥珀酸酯;聚乙酸乙烯酯邻苯二甲酸酯、丙烯酸聚合物和共聚物、以及可以商标名 (德国
韦斯特施泰德的罗士制药公司(Roth Pharma,Westerstadt,Germany))购得的甲基丙烯酸树脂、玉米蛋白、虫胶以及多糖。
[0275] 稀释剂(也称为“填充剂”)通常是必需的以增大固体剂型的体积,以便为片剂的压缩或小珠和颗粒的形成提供切实可行的大小。适合的稀释剂包括(但不限于)二水合磷酸二钙、硫酸钙、乳糖、蔗糖、甘露糖醇、山梨糖醇、纤维素、微晶纤维素、高岭土、氯化钠、无水淀粉、水解淀粉、预胶凝化淀粉、二氧化硅、氧化钛、硅酸镁铝以及糖粉。
[0276] 粘合剂用于赋予固体剂量调配物以粘结性质量,且由此确保片剂或小珠或颗粒在剂型形成之后保持完整。适合的粘合剂材料包括(但不限于)淀粉、预胶凝化淀粉、明胶、糖(包括蔗糖、葡萄糖、右旋糖、乳糖以及山梨糖醇)、聚乙二醇、蜡、天然和合成胶(如阿拉伯胶、黄蓍胶)、海藻酸钠、纤维素(包括羟丙基甲基纤维素、羟丙基纤维素、乙基纤维素以及维格姆(veegum))以及合成聚合物(如丙烯酸和甲基丙烯酸共聚物、甲基丙烯酸共聚物、甲基丙烯酸甲酯共聚物、甲基丙烯酸氨基烷酯共聚物、聚丙烯酸/聚甲基丙烯酸和聚乙烯吡咯烷酮)。
[0277] 润滑剂用于促进片剂制造。适合的润滑剂的实例包括(但不限于)硬脂酸镁、硬脂酸钙、硬脂酸、山嵛酸甘油酯、聚乙二醇、滑石以及矿物油。
[0278] 崩解剂用于促进剂型在投与之后崩解或“分解”,且通常包括(但不限于)淀粉、羟基乙酸淀粉钠、羧甲基淀粉钠、羧甲基纤维素钠、羟丙基纤维素、预胶凝化淀粉、粘土、纤维素、海藻素(alginine)、胶或交联聚合物,如交联PVP(来自GAF化学公司(GAF Chemical Corp)的 XL)。
[0279] 稳定剂用于抑制或阻滞药物分解反应(包括例如氧化反应)。适合的稳定剂包括(但不限于)抗氧化剂、丁基化羟基甲苯(BHT);抗坏血酸,其盐和酯;维生素E、生育酚和其盐;亚硫酸盐,如偏亚硫酸氢钠;半胱氨酸和其衍生物;柠檬酸;没食子酸丙酯和丁基化羟基苯甲醚(BHA)。
[0280] IV.制造MPP的方法
[0281] 用于制造纳米粒子的技术为本领域中已知且包括(但不限于)溶剂蒸发、溶剂去除、喷雾干燥、相转换、低温浇铸以及纳米沉淀。以下简述了粒子调配的适合方法。医药学上可接受的赋形剂(包括pH值调节剂、崩解剂、防腐剂以及抗氧化剂)可在粒子形成过程中任选地并入粒子中。如上所述,一或多种其它活性剂也可在粒子形成过程中并入纳米粒子中。
[0282] 1.溶剂蒸发
[0283] 在这种方法中,将纳米粒子基因载体的聚合组分溶解于挥发性有机溶剂(如二氯甲烷)中。接着将含有聚合物-药物结合物的有机溶液悬浮于含有表面活性剂(如聚(乙烯醇))的水溶液中。搅拌所得乳液直到大部分有机溶剂蒸发为止,留下固体纳米粒子。所得纳米粒子用水洗涤且在冷冻干燥器中干燥过夜。具有不同大小和形态的纳米粒子可通过这种方法获得。
[0284] 2.溶剂去除
[0285] 在这种方法中,将纳米粒子基因载体的组分分散或溶解于适合的溶剂中。这种混合物接着通过在有机油(如硅油)中搅拌来悬浮以形成乳液。固体粒子由乳液形成,其随后可从上清液中分离。
[0286] 3.喷雾干燥
[0287] 在这种方法中,将纳米粒子基因载体的组分分散或溶解于适合的溶剂中。溶液通过由压缩气体流驱动的微粉化喷嘴泵送,且所得气溶胶悬浮于空气的加热旋风器中,允许溶剂从微滴蒸发,形成粒子。
[0288] 4.相转换
[0289] 在这种方法中,将纳米粒子基因载体的组分分散或溶解于“良好”溶剂中,且将溶液倾入纳米粒子基因载体的聚合组分的强非溶剂中,从而在适宜条件下自发地产生纳米粒子。
[0290] 5.低温浇铸
[0291] 用于极低温浇铸纳米粒子的方法描述于颁予高博兹(Gombotz)等人的美国专利第5,019,400号中。在这种方法中,将纳米粒子基因载体的组分分散或溶解于溶剂中。接着在溶液冰点以下的温度下将混合物雾化到含有液体非溶剂的容器中,所述温度会将纳米粒子基因载体的组分冻成极小液滴。随着组分的液滴和非溶剂被温热,液滴中的溶剂解冻且被提取到非溶剂中,使纳米粒子硬化。
[0292] 6.纳米沉淀
[0293] 在这种方法中,将含有一或多种核酸的溶液逐滴加入含有纳米粒子基因载体的聚合组分的溶液中。由于核酸通过阳离子聚合物复合,故纳米粒子从溶液中沉淀。所得纳米粒子例如通过过滤或离心而从溶液中分离,洗涤且使用冷冻干燥器进行干燥。
[0294] 在一个特定实施例中,纳米粒子在方法中使用乳化制备。一般来说,粒子通过如以下中所述的o/w单一乳液或w/o/w双重乳液方法制备:R.C.蒙大奇(R.C.Mundargi)等人,控制释放杂志(J.Control Release)125,193(2008),M.李(M.Li)等人,国际药理学杂志(Int.J.Pharm.)363,26(2008),C.E.阿斯泰特(C.E.Astete)和C.M.萨布里欧夫(C.M.Sabliov),生物材料科学聚合物杂志(J.Biomater.Sci.Polymer)版,17,247(2006)以及R.A.耆那(R.A.Jain),生物材料(Biomaterials),21,2475(2000)。在这一程序中,将聚合物溶解于有机溶剂(如二氯甲烷)中以形成油相。将油相加入乳化剂的水溶液中,通常借助探针声波处理一段时间(例如2分钟)以形成乳液。将乳液在磁力搅拌下加入另一较大体积的乳化剂中以蒸发有机溶剂。
[0295] 纳米粒子在经1μm大小膜过滤器过滤且用水充分洗涤之后通过离心(例如20,000g持续25分钟)收集。为了制备纳米粒子以用于荧光显微镜法,对一定量的AF555标记的聚合物进行掺合,随后进行乳化工艺。在纳米沉淀方法的对照实验中,将浓度为25mg/ml的PLGA45k-PEG5k乙腈溶液在磁力搅拌(700rpm)下缓慢注射到DI水中。在完全去除有机溶剂之后,通过如上所述相同程序收集纳米粒子。
[0296] 纳米粒子的直径(nm)、多分散性指数(PDI)以及表面电荷(ζ电位,mV)通过在Zetasizer Nano ZS90(马萨诸塞州索思伯勒的马尔文仪器公司(Malvern Instruments,Southborough,MA))上动态光散射从三次重复测量中获得。将纳米粒子分散于10mM NaCl溶液(pH7)中。纳米粒子的形态通过透射电子显微法(TEM)在H7600TEM(日本日立公司(Hitachi,Japan))上表征。
[0297] V.使用MPP的方法
[0298] 本文中描述的数据突出了通过乳化方法制备以用于粘膜药物递送应用的粘液渗透性纳米粒子的许多潜在优势。第一,主要使用的乳化剂PVA可用低MW乳化剂替换以通过乳化方法制备具有类似药物囊封的生物可降解纳米粒子。所述纳米粒子展示出较高药物负载量,如对于疏水性药物(如姜黄素)大于5%,以及对于生物分子大于10%。表面改变材料(例如PEG)可增强纳米粒子到所关注的部位的递送,因为其形成可增强体内转运通过流体和材料的中性或接近中性的表面电荷。
[0299] 举例来说,本文中描述的纳米粒子快速渗透人类粘液屏障,而PVA包衣的纳米粒子被固定。因此,可应用最广泛使用的控制释放粒子的工业生产方法来制造用于药物递送应用的MPP。
[0300] 第二,预期通过乳化方法制备的MPP可在其它粘膜表面(如眼睛、鼻、肺、胃肠道和更多表面)快速渗透。CVM与其它粘液流体在化学含量和流变性质方面具有相似性。实际上,已观察到通过乳化方法制备的MPP可快速渗透在手术过程中收集的正常气道粘液和由囊性纤维化(CF)患者咳出的痰液。
[0301] 第三,挑战性的亲水性药物(包括蛋白质、肽以及核酸)可通过乳化方法囊封到纳米粒子中。举例来说,疫苗抗原(如卵白蛋白和破伤风类毒素)可调配到生物可降解纳米粒子中以用于疫苗接种,如MPP用于粘膜疫苗接种。
[0302] 第四,难以溶解于水可混溶有机溶剂中的疏水性药物可通过乳化方法成功地调配到生物可降解纳米粒子(如MPP)中。疏水性药物的改进的药物动力学和治疗功效可预期通过纳米粒子的递送实现,如MPP的粘膜药物递送。
[0303] 通过参考以下非限制性实例将进一步了解本发明。
[0304] 实例
[0305] 材料和方法
[0306] 胆酸钠盐、 20、 80、溴化十六烷基三甲基铵(CTAB)、磺基琥珀酸钠二辛酯(DSS)、聚乙二醇35氢化蓖麻油(Cremophor EL)以及D-α-生育酚聚乙二醇1000(维生素E-TPGS)是购自西格玛公司(Sigma;密苏里州圣路易斯(St.Louis,MO))。
[0307] 聚(乙烯醇)(Mw=25kDa,其中88%水解,和6kDa,其中80%水解)和Mw约400kDa的聚(乙烯-马来酸酐,1:1摩尔比)是购自多科学公司(PolySciences;宾夕法尼亚州瓦令顿(Warrington,PA))。
[0308] 糖酯D1216(SE)是来自三菱化学食品公司(Mitsubishi-Kagaku Foods Co.;日本东京(Tokyo,Japan))的礼物。
[0309] Alexa Fluor555尸胺是购自英杰公司(Invitrogen;纽约州大岛(Grand Island,NY))。
[0310] 固有粘度为0.15-0.25dL/g的聚(乳酸-共-乙醇酸)(PLGA;LA:GA50:50)(MW约15kDa)是购自湖滨生物材料公司(Lakeshore Biomaterials;阿拉巴马州伯明翰
(Birmingham,AL))。PEG MW为10、5、2以及1kDa的PLGA(LA:GA50:50)-PEG共聚物、PLA-PEG5k以及PCL-PEG5k是由济南岱罡生物材料有限公司(Jinan Daigang Biomaterial Co.,Ltd;
中国济南(Jinan,China))定制合成的且利用1H NMR和凝胶渗透色谱法(GPC)表征。使用了配备有折光率检测器和两根Waters HR4和HR5柱的Shimadzu设备。使用四氢呋喃
(THF)作为洗脱剂以0.5mL/min流动速率在35℃下进行分析。GPC用聚苯乙烯标准品(密苏里州圣路易斯的西格玛公司)校准。
[0311] PLGA-PEG嵌段共聚物的化学组成和分子量(MW)利用1H NMR表征。将聚合物溶解于1 1
CDCl3中,且使用Bruker400REM仪器在400MHz下记录 H NMR光谱。共聚物在CDCl3中的H NMR光谱展示于图3中。对来自LA单元的CH(5.22ppm)、来自GA单元的CH2(4.83ppm)以及来自环氧乙烷单元的CH2CH2(3.65ppm)的峰值进行积分,其中15.22、14.83、13.65分别是在5.22、
4.83以及3.65ppm处的峰值的积分强度。LA:GA的比率被估算为I5.22:(I4.83/2)。
[0312] 如下估算PLGA-PEG的MW:
[0313] (I3.65/4)/(I4.83/2)-(MWPEG/44)/(MWGA/58)
[0314] (I3.65/4)/(I5.22/1)-(MWPEG/44)/(MWLA/72)
[0315] MWPLGA-PEG=MWPEG+(MWGA+MWLA),其中MWPEG为1、2、5以及10kDa。
[0316] 类似地,如下估算PLA-PEG和PCL-PEG的分子量:
[0317] (I3.65/4)/(I5.22/l)=(MWPEG/44)/(MWLA/72)
[0318] MWPLA-PEG=MWPEG+MWLA;
[0319] (I3.65/4)/((I4.06+I2.31)/4)=(MWPEG/44)/(MWCL/114)
[0320] MWPCL-PEG=MWPEG+MWCL),
[0321] 其中MWPEG为5kDa,I4.06和I2.31分别为在4.06和2.31ppm处来自PCL的峰值的积分强度。
[0322] 各种含PEG的嵌段共聚物的特征展示于表1中。
[0323] 表1:含PEG的嵌段共聚物的特征
[0324]
[0325] [a]LA:GA的摩尔比通过在5.22ppm(丙交酯上的-CH-)、1.59ppm(丙交酯上的-CH3)以及4.83ppm(乙交酯上的-CH2-)比较1H NMR积分强度来测量。
[0326] [b]嵌段共聚物中的PEG含量通过1H NMR测定。
[0327] [c]PLGA-PEG分子量(Mn)利用1H NMR通过比较在5.22ppm(丙交酯中的-CH-)、1.59ppm(丙交酯上的-CH3)、4.83ppm(乙交酯中的-CH2-)以及3.65ppm(PEG中的-CH2CH2-)处的积分并且通过考虑PEG的已知Mn来测定。针对PCL-PEG,分析在4.06ppm(-O-CH2-)和
2.31ppm(-CH2-CO-)处的积分。
[0328] [d]Mn、Mw以及多分散性(PDI)利用GPC测量。
[0329] [e]PLGA-PEG10kDa纳米粒子通过将PLGA15kDa与PLGA-PEG10kDa(21.6%PEG含量)掺合来制成,其中纳米粒子中的总PEG含量为6重量%。
[0330] 纳米粒子内的总PEG含量使用Bruker400REM仪器在400mHz下利用1H NMR测定。将冻干的纳米粒子精确称重且溶解于含有1重量%六氘代二甲亚砜(TMS)作为内标的CDCl3中。PEG含量通过与使用TMS作为内标从1H NMR光谱获得的PEG5kDa校准曲线比较来测定。
[0331] 在新鲜人类子宫颈阴道粘液(CVM)中追踪荧光标记的纳米粒子如所公开般进行39-40。简言之,将在适合稀释度下的0.6μl纳米粒子混合到20μl粘液中且孵育1小时,随后用显微镜检查。影片是使用硅强化的目标相机(VE-1000,Dage-MTI)以66.7ms的时间分辨率捕获的,所述相机安装于配备有100×油浸物镜的倒置落射荧光显微镜上。每个实验n>150个粒子的轨迹使用MetaMorph软件(通用成像公司(Universal Imaging))提取。追踪影片(20s)使用metamorph软件(通用成像公司,威斯康星州格伦代尔(Glendale,WI))分析。每一粒子的时间平均均方位移(MSD)和有效扩散率作为时标的函数计算。针对每一条件进行三次实验。单侧、不等方差史都登氏t检验(Student's t-test)用于评估显著性(P<0.05)。
[0332] 在25℃下,使用VP-ITC微热量计(美国微凯尔公司(MicroCal Inc.,USA))进行ITC实验。实验通过以下方式进行:将2mg/ml粘蛋白于DI水中的溶液在481rpm的搅拌速度下在水中以1mg/ml的浓度注射到含有具有不同PEG表面密度的纳米粒子的2mL样品池中。全部28次注射是在间隔s和参考功率μcal/s下进行的。首先注射2μl粘蛋白溶液,随后是27次10μl粘蛋白溶液注射。结合等温线使用Origin软件作图并分析,其中将ITC测量值拟合于一位点结合模型。将化学计量应用于计算纳米粒子表面上粘蛋白的结合含量,以毫克粘蛋白/平方米形式呈现。
[0333] 实例1.制备纳米粒子
[0334] 材料和方法
[0335] 生物可降解纳米粒子通过如以下中所述的o/w单一乳液或w/o/w双重乳液方法制备:R.C.蒙大奇(R.C.Mundargi)等人,控制释放杂志(J.Control Release)125,193(2008),M.李(M.Li)等人,国际药理学杂志(Int.J.Pharm.)363,26(2008),C.E.阿斯泰特(C.E.Astete)和C.M.萨布里欧夫(C.M.Sabliov),生物材料科学聚合物杂志
(J.Biomater.Sci.Polymer)版,17,247(2006)以及R.A.耆那(R.A.Jain),生物材料
(Biomaterials),21,2475(2000)。
[0336] 针对大小、表面性质以及药物负载量(针对囊封药物的纳米粒子)对纳米粒子进行表征。使用多个粒子追踪在新鲜、未稀释的人类CVM中追踪纳米粒子的位移。
[0337] 用不同量的PEG制备的纳米粒子
[0338] 使用乳化用不同目标PEG含量(0重量%、2重量%、3重量%、5重量%、8重量%、10重量%以及25重量%,称为PLGA、PLGA-PEG2%、PLGA-PEG3%、PLGA-PEG5%、PLGA-PEG8%、PLGA-PEG10%以及PLGA-PEG25%)制备PLGA-PEG纳米粒子。选择PEG分子量5kDa,因为在相同PEG含量下,PEG在1kDa到10kDa范围内的6重量%PLGA-PEG纳米粒子均可快速渗透粘液。目标PEG含量通过在纳米粒子制备过程中改变PLGA与PLGA-PEG的比率来控制。纳米粒子的粒径通过调整聚合物浓度和乳化程序而控制为约100nm,且所有纳米粒子在动态光散射下均展示出多分散性指数小(不到0.1)的单分散直径。基于TEM研究,纳米粒子是球形的,且具有最高目标PEG含量的PLGA-PEG25%纳米粒子在粒子边界处展示出较小对比度,这可能由位于表面上的高含量的较低电子密度PEG引起。
[0339] 结果
[0340] 表2展示了如上所述制备的粒子的特征。
[0341] 表2:纳米粒子特征
[0342]
[0343] [a]纳米粒子的直径和多分散性指数(PDI)通过动态激光散射来测量。
[0344] [b]转运速率还可利用双对数MSD相对于时标图的斜率反映(α=1表示不受阻的布朗转运(Brownian transport),而更小的α反映了对粒子运动的阻碍增大)。
[0345] [c]在1s的时标下计算纳米粒子在粘液(Dm)中与在水中(Dw)比较的整体平均扩散系数的比率以及有效扩散率值。
[0346] 数据为平均值±SD。
[0347] 增大目标PEG含量引起纳米粒子表面电荷实质性减小(表2),且当PEG含量达到8重量%和8重量%以上时获得几乎中性的表面电荷(约4mV)。减小的表面电荷反映出表面PEG覆盖率增大,因为致密PEG涂层可有效地遮蔽纳米粒子的表面电荷。然而,表面电荷(ζ-电位)测量值不能提供用于评估PEG表面密度在粒子表面上PEG链数目方面的定量信息。另外,表面电荷测量值可受核心材料和测量介质影响。
[0348] 1H NMR用于直接定量纳米粒子上的PEG表面密度。如表3中所示,纳米粒子上的表面PEG含量随目标PEG含量增加而增加。表3展示具有不同PEG含量的PLGA-PEG纳米粒子的PEG表面密度。表面PEG水平如与标准DSS(1重量%)相比在D2O中通过1H NMR检测。纳米粒子中的总PEG含量如与标准TMS(1重量%)相比在CDCl3中通过1H NMR测量。N/A,不适用。
[0349] 表3:纳米粒子上的表面PEG含量
[0350]
[0351] [a]PEG密度[Γ]意指通过假定表面上的所有PEG链均为全长PEG5kDa所计算的每100平方纳米的PEG分子数目。
[0352] [b]PEG密度/完全表面覆盖率[Γ/Γ*]。完全蘑菇覆盖率[Γ*]意指每100平方纳米不受拘束的PEG分子数目。(值<1指示具有低PEG密度的蘑菇覆盖率,而>1表示刷子状态;当值>>1时表示具有极高PEG密度的致密刷子状态)。
[0353] 数据(平均值±SD)为至少三个不同批次样品的平均值。
[0354] 实例2:用不同乳化剂制备的纳米粒子
[0355] 材料和方法
[0356] Alexa Fluor555尸胺(AF555)以化学方式结合于聚合物。使用乳化制备纳米粒子。通常,将PLGA-PEG5k和AF555标记的PLGA-PEG5k的混合物(总共50mg)溶解于1mL二氯甲烷(DCM)中。将油相在冰-水浴中在30%振幅下持续2分钟在声波处理(VibraCell,康涅狄格州纽敦的声学和材料公司(Sonics&Materials Inc.,Newtown,CT))下倾入含有1%乳化剂的
5mL水溶液中,从而形成水包油乳液。
[0357] 将乳液在磁力搅拌下在700rpm下持续至少3小时倾入乳化剂溶液的另一40mL水相中以允许溶剂蒸发。溶剂通过将溶液在真空室中置放30分钟而进一步蒸发。最终纳米粒子悬浮液通过1μm针筒过滤器过滤,在20,000g下离心25分钟且用水充分洗涤。
[0358] 在1%w/v的浓度下测试乳化剂,包括胆酸钠盐(CHA)、磺基琥珀酸钠二辛酯(DSS)、溴化十六烷基三甲基铵(CTAB)、聚乙烯醇(PVA)、聚(乙烯-马来酸酐)(PEMA)、皂苷、TWEEN20、TWEEN80以及糖酯D1216(SE)。0.01%-0.5%w/v的CHA溶液也能成功地制造纳米粒子。还测试了 F127、F68溶液以及其它低MW乳化剂(如Cremophor EL和维生素E TPGS),但不稳定的乳液产生较大聚集的粒子。
[0359] 表4展示了使用PLGA-PEG(Mn约83kDa)和PLGA(Mn约15kDa)以及各种乳化剂(1%w/v)制备的纳米粒子的特征。
[0360] 表4.使用PLGA-PEG5k(Mn约83kDa)和PLGA(Mn约15kDa)以及代表性乳化剂(1%w/v)通过乳化方法制备的生物可降解纳米粒子的特征。
[0361]
[0362] [a]在1s的时标下在水(Dw)中与在粘液中(Dm)比较的整体平均扩散系数的比率。
[0363] 为了评估聚乙二醇分子量(PEG MW)对通过乳化制备的纳米粒子的粘液渗透性质的作用,选择CHA作为代表性低MW强乳化剂。在0.5%CHA溶液中制备在约6重量%PEG含量下具有不同PEG MW的PLGA-PEG纳米粒子。为了针对PLGA-PEG10k纳米粒子获得总体6重量%PEG含量,使用PLGA-PEG10k(21.6重量%)和PLGA15k的掺合物。
[0364] 结果
[0365] 由各种分子量的PEG制备的纳米粒子(约6重量%PEG含量)的性质展示于表5中。
[0366] 表5.通过乳化方法使用各种MW的PEG制备的生物可降解纳米粒子(约6重量%PEG含量)的特征。
[0367]
[0368] [a]PEG密度[Γ]指示每100平方纳米PEG分子数目。表面PEG含量通过D2O中纳米粒子的1H NMR定量。
[0369] [b]PEG密度与完全表面覆盖率的比率[Γ/Γ*]。完全表面覆盖率[Γ*]指示完全包覆100nm表面所需的不受拘束的PEG分子的理论数目。([Γ/Γ*]<1指示具有低表面PEG密度的蘑菇状态,而>1表示具有高表面PEG密度的刷子状态)
[0370] 表6中展示了由各种浓度的含有6重量%PEG的CHA和PLGA-PEG5k制备的纳米粒子的性质。
[0371] 表6:使用不同浓度乳化剂(CHA)通过乳化方法制备的生物可降解纳米粒子的表征。使用含有6重量%PEG的PLGA-PEG5k。
[0372]
[0373] 实例3:制备囊封药物的纳米粒子
[0374] 材料和方法
[0375] 选择姜黄素作为模型疏水性药物,其与聚合物一起溶解于DCM中。所述程序类似于制备未负载纳米粒子的程序。所制备的姜黄素-纳米粒子因姜黄素的固有荧光而在粘液中可视。
[0376] 将BSA用作模型亲水性药物,因为其代表大分子生物学。将BSA-FITC和BSA(10%比率的BSA-FITC)在37℃下溶解于0.2mL16%w/v水溶液中。将这一溶液在探针声波处理(30%振幅,1min,其中脉冲为1s)过程中在冰-水浴中加入1mL含100mg/ml PLGA-PEG5k的DCM溶液中。将所得W/O主乳液在声波处理(20%振幅,持续2min)下立即加入第二水相(5mL1%皂苷溶液)。将双重乳液在磁力搅拌3小时下转移到另一份40mL1%皂苷溶液中。将纳米粒子通过1μm注射器过滤器过滤,洗涤且通过离心收集。BSA-FITC允许在粘液中追踪负载有BSA的纳米粒子的可能性。
[0377] 结果
[0378] 姜黄素纳米粒子和BSA纳米粒子的目标药物负载量分别是9.1%和16.7%。
[0379] 实例4.乳化能力的估计
[0380] 材料和方法
[0381] 将PLGA-PEG5k(MW约83kDa)用作模型聚合物且以50mg/ml溶解于DCM中。将0.5ml PLGA-PEG5k于DCM中的溶液在声波处理下在30%振幅下加入含有1%(w/v)乳化剂的5ml水相,从而使用上述相同方法制备乳液。将所形成的乳液在磁力搅拌下在700rpm下持续3小时加入另一份20ml1%乳化剂溶液。每一乳化剂的乳化能力通过其防止聚集粒子形成的能力估计。聚集粒子通过在500g下离心20min来收集,且上清液中的剩余纳米粒子通过在30,000g下离心25min来收集。计算纳米粒子与聚集粒子的重量比,且用作估计乳化剂的乳化能力的指数。
[0382] 直径和表面电荷
[0383] 纳米粒子的直径和ζ-电位(表面电荷)使用Zetasizer Nano ZS90测量。将纳米粒子重悬于10mM NaCl溶液中。TEM样品通过将纳米粒子的稀悬浮液滴加在TEM栅格上且使其风干来制备。粒子形态使用H7600透射电子显微镜(日本日立公司(Hitachi,Japan))表征。
[0384] 囊封效率
[0385] 姜黄素在纳米粒子中的囊封效率通过以下方式测量:将冻干的纳米粒子溶解于DMSO中,且在430nm下使用Biotek Synergy MX读板器测量吸光度。药物含量通过与姜黄素校准曲线(浓度范围0-50μg/ml)相比来测定。减去在相同聚合物浓度下在DMSO中的空白纳米粒子的吸光度。在碱性消化之后分析BSA-FITC的囊封效率。已知量的冻干纳米粒子在1M氢氧化钠中经历完全水解。使用Biotek Synergy MX读板器在490nm激发波长和525nm发射波长下分析所得溶液。在相同加工条件下制备含有相同量聚合物和增加量BSA-FITC的标准溶液。BSA在纳米粒子中的量通过与BSA-FITC校准曲线比较来测定。
[0386] 如下计算药物负载量(DL)和囊封效率(EE):
[0387]
[0388]
[0389] 结果
[0390] 各种乳化剂的结果展示于表7中。
[0391] 表7:模型疏水性药物(姜黄素)和模型亲水性药物(BSA)使用PLGA-PEG5k(6重量%PEG)囊封在MPP(CHA和皂苷作为乳化剂)和CP(PVA作为乳化剂)两者中
[0392]
[0393] [a]药物负载量(DL%)表示纳米粒子中药物的重量含量。
[0394] [b]药物囊封效率(EE%)表示最终药物负载量与理论药物负载量相比的比率。
[0395] 表面聚乙二醇(PEG)密度的定量
[0396] 纳米粒子上的表面PEG密度使用Bruker400REM仪器在400MHz下通过1HNMR测定。将弛豫时间设置在10s,且ZG在90°。将具有不同PEG含量的纳米粒子直接制备于0.5%CHA D2O溶液中且悬浮于具有1重量%3-(三甲基硅烷基)-1-丙烷磺酸钠盐作为用于1H NMR分析的内标的D2O中。
[0397] 将已知重量的PEG5kDa(密苏里州圣路易斯的西格玛公司)均聚物在具有1%3-(三甲基硅烷基)-1-丙烷磺酸钠盐的D2O中连续稀释成不同浓度,从而针对1H NMR中的PEG信号建立校准曲线,且这一校准曲线用于计算纳米粒子上的表面PEG含量。
[0398] 将0.2ml纳米粒子于D2O中的溶液冻干且称重。通过假设所有表面PEG链均为全长的PEG5kDa,将表面PEG密度计算为纳米粒子上每100平方纳米表面积PEG分子数目。还用通过相同方法制备的PLGA纳米粒子进行对照1H NMR实验,且对于PLGA纳米粒子不存在可检测的CHA峰值。PEG密度[Γ]是纳米粒子表面上每100平方纳米PEG分子数目。其可通过如下将利用1H NMR检测的总PEG含量(MPEG,以摩尔为单位)除以所有纳米粒子的总表面积来计算:
[0399]
[0400] 其中WNP是纳米粒子的总质量,dNP是纳米粒子的密度(将纳米粒子的密度假设为等于聚合物的密度,针对PLGA1.21g/ml),且D是如利用动态光散射测量的粒径。
[0401] 完全表面蘑菇覆盖率[Γ*]是占据100nm2粒子表面积的不受拘束的PEG分子数目。为了测定[Γ*],估算由单一PEG链占据的表面积。使用随机游走统计,单一PEG链占据在利用直径ζ的球体给出的界面处的面积:
[0402]
[0403] 其中m是PEG链的分子量。由一个PEG分子占据的表面积可由(ζ/2)2测定。PEG5kDa2 2
具有直径为5.4nm的不受拘束的分子球体,且占据22.7nm的表面积。因此,完全覆盖100nm表面积的PEG分子数目[Γ*]是4.4。
[0404] [Γ/Γ*]可用作测量纳米粒子表面上PEG密度的指数,其中值<1指示低PEG密度,其中PEG分子呈蘑菇构象;而值>1指示高PEG密度,其中PEG分子呈刷子样构象。类似地,PEG10kDa、2kDa以及1kDa的[Γ*]分别是2.2、11以及22。结果展示于上表2中。
[0405] 表8展示具有不同PEG含量的PLGA-PEG纳米粒子的PEG表面密度。表面PEG水平如与标准DSS(1重量%)相比在D2O中通过1H NMR检测。纳米粒子中的总PEG含量如与标准TMS(1重量%)相比在CDCl3中通过1H NMR测量。N/A,不适用。
[0406] 表8.具有不同PEG含量的PLGA-PEG纳米粒子的PEG表面密度
[0407]
[0408] [a]PEG密度[Γ]意指通过假定表面上的所有PEG链均为全长PEG5kDa所计算的每100平方纳米的PEG分子数目。
[0409] [b]PEG密度/完全表面覆盖率[Γ/Γ*]。完全蘑菇覆盖率[Γ*]意指每100平方纳米不受拘束的PEG分子数目。(<1指示具有低PEG密度的蘑菇覆盖率,而>1表示刷子状态;当值>>1时表示具有极高PEG密度的致密刷子状态)。
[0410] 数据(平均值±SD)为至少三个不同批次样品的平均值。
[0411] 计算表面PEG密度([Γ,每100平方纳米PEG链数目)且与完全表面蘑菇覆盖率([Γ*],每100平方纳米不受拘束的PEG分子数目)相比。PLGA-PEG3%纳米粒子展示2.6重量%的表面PEG含量,密度为6.5个PEG/100平方纳米,等于[Γ]/[Γ*]=1.5,其使PLGA-PEG3%具有刷子构象的表面PEG涂层。高度致密刷子构象的PEG涂层([Γ]/[Γ*]>3)在高于10个PEG/100平方纳米(PLGA-PEG5%)的PEG表面密度下获得。
[0412] 通过将冻干的PLGA-PEG纳米粒子溶解于NMR溶剂CDCl3中,利用1H NMR测量纳米粒子内的总PEG含量,且已发现纳米粒子中的总PEG含量(表面PEG和嵌入纳米粒子核心内的PEG两者)极其接近表面PEG含量,如表5中所示。在粒子表面上检测通过乳化方法制备的PLGA-PEG纳米粒子中的几乎所有PEG链。乳化方法涉及蒸发来自乳液小滴的有机溶剂(二氯甲烷)且随后固化聚合物核心。有机溶剂的缓慢蒸发为亲水性PEG链在纳米粒子表面上扩散和装配提供了足够的时间,这产生了PEG与表面的高分配比。然而,在利用乳化方法制备纳米粒子的过程中存在PEG的显著损失,且对于PLGA-PEG25%纳米粒子,PEG损失比率可高达50%。
[0413] 类似于前述报导,PEG的损失可归因于由共聚物中PLGA-PEG的低分子量部分形成胶束,其具有较高PEG含量和较高亲水性。离心和洗涤步骤之后无法收集含有较高PEG含量聚合物的大小极小的粒子的这一部分,这可由纳米粒子形成后与原料聚合物相比利用凝胶渗透色谱法测量的聚合物增大的平均分子量证实。在对照实验中通过纳米沉淀方法(溶剂扩散方法)制备的PLGA-PEG10%纳米粒子(117nm)展示出纳米粒子中6.5重量%总PEG含量,且在表面仅检测到89%PEG链(等于5.8重量%表面PEG含量)。
[0414] 实例5.纳米粒子的粘液渗透追踪
[0415] 材料和方法
[0416] 收集人类子宫颈阴道粘液(CVM)。简言之,根据经约翰霍普金斯大学的机构审查委员会(Institutional Review Board of the Johns Hopkins University)批准的方案,使用自身采样的月经收集装置获得具有正常阴道菌群的来自女性的未经稀释的子宫颈阴道分泌物。将装置插入阴道中持续60s,移出且置放于50ml离心管,且在1000rpm下离心2min以收集分泌物。
[0417] 进行在新鲜人类子宫颈阴道粘液(CVM)中的荧光标记的纳米粒子的追踪。简言之,将在适合稀释度下的0.6μl纳米粒子加入定制腔室玻片内的20μl粘液中,且在室温下孵育1小时,随后用显微镜检查。纳米粒子在CVM中的轨迹通过使用多个粒子追踪(MPT)来记录。20s影片是使用硅强化的目标相机(VE-1000,Dage-MTI)以66.7ms的时间分辨率捕获的,所述相机安装于配备有100×油浸物镜(N.A.,1.3)的倒置落射荧光显微镜上。追踪影片(20s)使用metamorph软件(通用成像公司,威斯康星州格伦代尔)分析。
[0418] 每一粒子的时间平均均方位移(MSD)和有效扩散率作为时标的函数计算:
[0419] <Δr2(τ)>=[x(t+τ)-x(t)]2+[y(t+τ)-y(t)]2
[0420] 其中x和y表示作为时间函数的纳米粒子坐标,且τ是时滞。
[0421] 使用来自囊封的姜黄素或BSA-FITC的荧光以相同方式在人类CVM中追踪负载有姜黄素的纳米粒子和负载有FITC-BSA的纳米粒子。粒子渗透到粘液层中使用菲克氏第二定律(Fick's second law)和从追踪实验获得的扩散系数建模。
[0422] 结果
[0423] 通过乳化制备的含有CHA和PVA的PLA-PEG和PCL-PEG纳米粒子的人类CVM转运的比较展示于图1a-h中。图1a和1b展示了含有CHA和PVA的PLA-PEG和PCL-PEG纳米粒子的代表性轨迹。图1e和1d是展示随时标变化的整体平均几何均方位移()的图式。图1e和1f是展示在1s的时标下个别粒子有效扩散率(Deff)的对数分布的图式。图1g和1h是展示随时间能够渗透生理学30μm厚粘液层的粒子的估计分率的图式。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。这份数据展示了使用PVA制得的纳米粒子的固定以及使用低MW乳化剂CHA制得的纳米粒子的快速粘液渗透,其中有效扩散率类似于针对PLGA-PEG5k纳米粒子测量的那些。
[0424] PEG分子量对MPP在CVM中的转运速率的作用展示于图2a和2b中。图2a和2b展示了PEG MW对MPP在人类子宫颈阴道粘液中的转运速率的作用。图2a是展示整体平均几何均方位移随时标而变的图式。图2b是展示在1s的时标下个别粒子有效扩散率(Deff)的对数分布的图式。粒子使用PLGA-PEG(6重量%PEG)用乳化方法制备。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。这些粒子均快速渗透粘液(也参见表5)。
[0425] 纳米粒子表面电荷与PEG MW成反比且在-18mV(1kDa)到-2.3mV(10kDa)之间变化。利用1H NMR测量的表面PEG密度[Γ](每100平方纳米PEG数目)随PEG MW增大而减小。然而,表面PEG密度与形成刷子样PEG涂层所需的理论PEG密度[Γ*]的比率[Γ/Γ*][11]大于2(表5),与PEG MW无关,指示在PLGA-PEG(1-10kDa)/CHA纳米粒子表面上存在致密的刷子样PEG涂层。
[0426] 图3a-3c展示了负载有姜黄素和BSA的MPP和常规粒子(CP)的转运速率。图3a是展示整体平均几何均方位移随时标而变的图式。图3b是展示在1s的时标下个别粒子有效扩散率(Deff)的对数分布的图式。图3c是展示随时间预测能够渗透30μm厚粘液层的粒子的估计分率的图式。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。负载有姜黄素和BSA的纳米粒子以比在τ=ls下在水中慢仅6和36倍的速率在粘液中快速扩散(图3a)。相比之下,用PVA制备的纳米粒子固定在CVM中(图3b),其中转运速率比在水中慢超过2,000倍。
[0427] 无PEG涂层的PLGA纳米粒子完全固定在粘液内,其中扩散率比相同大小的纳米粒子在水中的扩散率慢38,000倍。纳米粒子上存在PEG表面涂层显著改进了其通过高度粘弹性粘液的扩散,表面PEG密度为6.5个PEG/100平方纳米的PLGA-PEG3%展示出高达142的增大的Dw/Dm值。将表面PEG密度进一步增加到10.4个PEG/100平方纳米,PLGA-PEG5%纳米粒子仅比其在水中的扩散慢17倍。当表面PEG密度高于16.4个PEG/100平方纳米(PLGA-PEG8%)时,超过90%的纳米粒子是扩散的。表面PEG密度的进一步增加很可能将不显著改进粘液内的粒子扩散率,因为16.4个PEG/100平方纳米的表面密度已能够有效遮蔽粘液组分的结合。PLGA-PEG8%、10%以及25%的约50%-70%纳米粒子能够在60分钟内渗透生理学30μm厚粘液层,速率比PLGA-PEG5%、PLGA-PEG3%(致密涂层)、PLGA-PEG2%(低涂层)以及PLGA(无涂层)高得多。
[0428] 实例6:纳米粒子在粘液中的稳定性.
[0429] 材料和方法
[0430] 通过使粒子与粘液组分之间的粘附相互作用减到最少而使纳米粒子在粘液中稳定是其作为粘液渗透药物载体在体内应用的重要准则。研究作为粘蛋白结合指示的纳米粒子大小在粘蛋白存在下的变化,从而测定在粘蛋白存在下具有不同PEG表面密度的纳米粒子的稳定性。选择提取自牛颌下腺的粘蛋白作为模型粘蛋白,因为粘蛋白是粘液的主要成分,且来自牛颌下腺的粘蛋白与人类CVM在结构和生理学性质两个方面具有相似性。
[0431] 纳米粒子与粘蛋白溶液(10mg/ml)一起孵育,且监测粒径随时间推移的变化。
[0432] 结果
[0433] PEG表面密度≥16.4个PEG/100平方纳米的PLGA-PEG纳米粒子在粘蛋白溶液中是稳定的,在整个3小时孵育过程中保持其流体动力学直径,且在这些PEG表面密度下,PEG涂层呈高度致密刷子构象([Γ]/[Γ*]>3)。相比之下,表面密度为6.5个PEG/100平方纳米的PLGA-PEG5%纳米粒子在与粘蛋白溶液一起孵育甚至仅5分钟之后也展示出约5%的粒径增加,且这些PLGA-PEG5%纳米粒子上的PEG表面密度已产生刷子PEG涂层([Γ]/[Γ*]>1)。因此,仅刷子PEG涂层不足以完全遮蔽粘蛋白结合。在从刷子构象到蘑菇构象的减小的PEG表面密度下,存在粒径的递增。在无PEG涂层的情况下,PLGA纳米粒子在粘蛋白中孵育的5分钟内展示出从109±2nm到207±9nm的显著大小增加。
[0434] 图4a是说明表面PEG覆盖率([Γ/Γ*])对纳米粒子的粘液渗透的影响的示意图。上方的图展示以渐增覆盖率制备具有表面PEG涂层的PLGA-PEG纳米粒子。随着表面PEG覆盖率增加,PEG状态从蘑菇(邻近PEG链不重叠,[Γ/Γ*]<1,图4a)变成刷子(邻近PEG链重叠,1<[Γ/Γ*]<3,图4b)变成致密刷子([Γ/Γ*]>3,图4c)。中间的图说明了PEG覆盖率如何决定粘液暴露后的粘-粘附相互作用。在低PEG覆盖率([Γ/Γ*]<1)下,粘蛋白纤维强力粘附于纳米粒子核心。在中等PEG覆盖率(1<[Γ/Γ*]<3)下,粘蛋白纤维仍可部分吸收到纳米粒子核心。在高([Γ/Γ*]>3)PEG覆盖率下,纳米粒子核心完全由生物惰性PEG冠环遮蔽,使得无粘蛋白吸收到纳米粒子中。下方的图展示了具有低PEG覆盖率的纳米粒子固定于粘液中,具有中等PEG覆盖率的纳米粒子受到阻碍或甚至固定在粘液中,具有高和极高PEG覆盖率的纳米粒子能够快速渗透粘液。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用