会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 物理 / 相变 / 汽化 / 低温液体的汽化冷量回收利用系统

低温液体的汽化冷量回收利用系统

阅读:965发布:2021-02-24

IPRDB可以提供低温液体的汽化冷量回收利用系统专利检索,专利查询,专利分析的服务。并且本发明提供了一种汽化冷量回收利用系统,通过该系统可以将低温液体的汽化冷量进行回收并加以利用,能量的利用率较高。其包括与低温液体储槽(1)连接的空浴式汽化器(3)、低温液体汽化气体出口(7),其特征在于:在所述空浴式汽化器(3)的两端并联有水浴式汽化器(2),水浴式汽化器(2)的水槽(4)通过循环水泵(6)、阀、供水管路(8)、回水管路(9)与工艺设备(5)连接构成冷却水循环系统;所述阀为蝶阀,所述蝶阀有三个,其中第一蝶阀(10)、第二蝶阀(11)设置在循环水泵(6)的两侧,第三蝶阀(12)设置在工艺设备(5)与水槽(4)之间。,下面是低温液体的汽化冷量回收利用系统专利的具体信息内容。

1.低温液体的汽化冷量回收利用系统,其包括与低温液体储槽(1)连接的空浴式汽化器(3)、低温液体汽化气体出口(7),其特征在于:在所述空浴式汽化器(3)的两端并联有水浴式汽化器(2),水浴式汽化器(2)的水槽(4)通过循环水泵(6)、阀、供水管路(8)、回水管路(9)与工艺设备(5)连接构成冷却水循环系统;所述阀为蝶阀,所述蝶阀有三个,其中第一蝶阀(10)、第二蝶阀(11)设置在循环水泵(6)的两侧,第三蝶阀(12)设置在工艺设备(5)与水槽(4)之间。

2.根据权利要求1所述低温液体的汽化冷量回收利用系统,其特征在于:低温液体储槽(1)与空浴式汽化器(3)的连接管道上设置有相串联的低温阀和第一低温阀组(29)。

3.根据权利要求2所述低温液体的汽化冷量回收利用系统,其特征在于:水浴式汽化器(2)的输入侧设置有第二低温阀组(30);第二低温阀组(30)与水浴式汽化器(2)串联后与第一低温阀组(29)与空气汽化器(3)形成的串联路相并联。

4.根据权利要求3所述低温液体的汽化冷量回收利用系统,其特征在于:第一低温阀组(29)、第二低温阀组(30)分别是由三个低温阀串联后与另一低温阀并联;第一低温阀组(29)、第二低温阀组(30)其串联的三个低温阀中,中间的第一低温阀(15)、第二低温阀(16)分别为低温电动阀。

5.根据权利要求4所述低温液体的汽化冷量回收利用系统,其特征在于:供水管路(8)中循环水泵(6)的吸入口(13)设置在水槽(4)的低点,回水管路(9)到水槽(4)的接口设置在循环水泵(6)吸入口(13)的对侧高点。

6.根据权利要求5所述低温液体的汽化冷量回收利用系统,其特征在于:吸入口(13)为喇叭状。

7.根据权利要求6所述低温液体的汽化冷量回收利用系统,其特征在于:冷却水循环系统中安装温度传感器(21),第一低温电动阀(15)、第二低温电动阀(16)和温度传感器(21)通过直接数字控制系统(28)实现三者联锁自动控制。

8.根据权利要求7所述低温液体的汽化冷量回收利用系统,其特征在于:温度传感器(21)安装在冷却水循环系统中的循环水泵(6)的吸入口附近。

说明书全文

低温液体的汽化冷量回收利用系统

(一)技术领域

[0001] 本发明涉及工业能量回收利用的系统设备,具体为一种低温液体的汽化冷量回收利用系统。
[0002] 目前,国内很多工业厂房工艺设备都需要使用氮气、氩气等气体,而这些气体往往都是由罐装的低温液氮、液氩等汽化而来,尤其在电子行业的使用更为广泛,使用量也很大,部分厂房每天液氮用量高达30吨左右。低温液态的氮气、氩气在经过汽化器汽化过程中会吸收热量,使周围产生大量的冷量,从而使汽化器周围空气中的水蒸汽凝结,导致汽化器上结上厚厚的一层霜。上述产生大量的冷量如果不予以回收,不但造成极大的能源浪费,而且在长期的运行过程中发现还存在以下缺点:汽化器上厚厚的一层霜会增加汽化器的承载能力,降低汽化效率,同时汽化器的使用寿命受到影响,存在随时断裂的可能;汽化的不稳定性往往使工艺设备使用点气体工作温度不稳定,为保障工艺设备用气的稳定性,高峰用气时必须人为用水冲刷厚霜,使厚霜融化产生的废水,往往直接排入下水管网,无形增加了企业的排污量,同时带来的人力、水等资源使用,也给企业加大了资金投入。 [0003] 针对上述低温液体的汽化冷量不予以回收而造成的能量浪费及带来的问题,本发明提供了一种汽化冷量回收利用系统,通过该系统可以将低温液体的汽化冷量进行回收并加以利用,能量的利用率较高。
[0004] 其技术方案如下:其包括与低温液体储槽1连接的空浴式汽化器3、低温液体汽化气体出口7,其特征在于:在所述空浴式汽化器3的两端并联有水浴式汽化器2,水浴式汽化器2的水槽4通过循环水泵6、阀、供水管路8、回水管路9与工艺设备5连接构成冷却水循环系统;所述阀为蝶阀,所述蝶阀有三个,其中第一蝶阀10、第二蝶阀11设置在循环水泵6的两侧,第三蝶阀12设置在工 艺设备5与水槽4之间。
[0005] 其进一步特征在于:低温液体储槽1与空浴式汽化器3的连接管道上设置有相串联的低温阀和第第一低温阀组29;水浴式汽化器2的输入侧设置有第二低温阀组30、第二低温阀组阀组30与水浴式汽化器2串联后与第一低温阀组29与空气汽化器3形成的串联路相并联;第一低温阀组29、第二低温阀组30分别是由三个低温阀串联后与另一低温阀并联;第一低温阀组29、第二低温阀组30其串联的三个低温阀中,中间的第一低温阀15、第二低温阀16分别为低温电动阀;供水管路8中循环水泵6的吸入口13设置在水槽4的低点,回水管路9到水槽4的接口设置在循环水泵6吸入口13的对侧高点;吸入口13为喇叭状;冷却水循环系统中安装温度传感器21,第一低温电动阀15、第二低温电动阀16和温度传感器21通过直接数字控制系统28实现三者联锁自动控制;温度传感器21安装在冷却水循环系统中的循环水泵6的吸入口附近。
[0006] 发明技术效果:采用本发明后,将水浴式汽化器2的水槽4中的水通过循环水泵加压进入冷却水供水管路(20℃),经工艺设备使用后的冷却水(25℃)温度上升回到水槽,水槽中的水与水浴式汽化器2外壁热交换而使其温度从25℃降低到20℃,获得的冷量用于工艺循环冷却水系统,使得汽化冷量得以回收,汽化器周围空气中的水蒸汽不会凝结而导致汽化器上结上厚厚的一层霜,从而提高了汽化的稳定性和汽化能力,使得工艺设备使用点气体工作温度稳定,延长汽化器的使用寿命,减少了企业的运行资金投入;在水浴式汽化器2和空浴式汽化器3的前端分别安装第一低温电动阀15、第二低温电动阀16,在冷却水循环系统中安装温度传感器21,进一步保证了汽化的稳定性和汽化能力,使得工艺设备使用点气体工作温度更加稳定,延长汽化器的使用寿命,减少了企业的运行资金投入。 [0007] 图1为冷量回收系统结构示意图。
[0008] 图中:1-液氮储槽 2-水浴式汽化器 3-空浴式汽化器 4-水槽5-工艺设备 6-循环水泵 7-氮气去工艺点 8-工艺循环水供水9-工艺循环水回水、第一蝶阀 10、第二蝶阀11第三蝶阀 12、13-吸水喇叭口与支座 14-低温阀 15-第一低温电动阀 16-第二低温电动阀、 17-球阀 18-球阀 19-球阀 20-自控线路 21-温度传感器 22-低温阀 23-低温阀
24-低温阀25-低温阀 26-低温阀 27-低温阀 28-直接数字控制系统控制柜29-第一低温阀组 30-第二低温阀组
[0009] 见图1,本发明的汽化冷量回收利用系统包括水浴式汽化器2、空浴式旁路汽化器3、水槽4、循环水泵6、阀门、供水管路8和回水管路9,汽化器2与旁路汽化器3并联连接,供水管路8中循环水泵6的吸入口13设置在水槽4的低点,吸入口13为喇叭状,回水管路9到水槽4的接口设置在吸入口13的对侧高点,在汽化器2和旁路汽化器3的前端分别安装第一低温电动阀15、第二低温电动阀16,温度传感器21安装在循环水泵6的吸入口附近,第一低温电动阀15、第二低温电动阀16和温度传感器21通过自控线路实现三者的联锁。 [0010] 下面结合附图描述本发明的工作过程:当工艺循环冷却水供水8温度大于20℃时,通过直接数字控制系统28控制(简称DDC控制柜,为常规外购产品,一般配电柜厂商都可定制,元器件采用施耐德或西门子等名牌产品),将通过低温电动阀15的液体流量减少,直至关闭,同时第二低温电动阀16的液体流量增大直至全开;当工艺循环冷却水供水8的温度小于20℃时,将通过第二低温电动阀16的液体流量减少,直至关闭,同时第一低温电动阀15的液体流量增大直至全开,从而既保证了气体的稳定流量,又保证了工艺循环冷却水系统稳定的工况,而温度传感器21安装在水泵6的水槽吸入口附近,防止循环水系统出现故障导致系统管路的水不流动,如果这时温度传感器21安装在循环水系统管路中,水不流动没有进行热交换,工艺设备使用后的高温水不能回到水槽,温度传感器21会因周围环境温度的作用探测到系统温度升高,一直让第二低温电动阀16开启,第一低温电动阀15关闭,使得空浴式汽化器3关闭,水浴式汽化器2工作,没有进行热交换,水浴式汽化器2一直工作会导致水槽4全部结冰,液体的汽化受到严重影响导致生产受到影响。如果温度传感器21安装在水泵6的水槽吸入口附近的水槽4壁上,循环水系统出现故障导致系统管路的水不流动没有进行热交换,这时温度传感器21会探测到系统温度的降低,通过第二低温电动阀16的液体流量减少,直至关闭水浴式汽汽化器2,同时低温电 动阀15的液体流量增大直至全开,空浴式汽化器3正常工作,从而不会因为循环水系统的故障而使得液体的汽化受到严重影响,保证了气体的稳定流量。最后让供水管路8中循环水泵6的吸入口,设置在所述水槽4的低点,回水管路9到水槽4的接口设置在循环水泵6吸入口的对侧高点,是为了增加水的流动,使得冷却水循环系统的热交换更加充分。冷却水循环系统中的循环水为软化水或纯水,吸入口13为喇叭状。通过以上结构,从而进一步提高了汽化的稳定性和汽化能力,使得工艺设备使用点气体工作温度稳定,延长汽化器的使用寿命。 [0011] 下面以一般电子厂房使用液氮汽化为例进行有益效果分析,按照每天使用液态氮气量10吨计算,在压力P=0.8Mpa情况下,液氮的温度-196℃,液态氮气的沸点温度-172.56℃;111.7K时,液氮的比热容为2.582KJ/Kg·K;95.5K时,液氮的比热容为
2.180KJ/Kg·K(见表1)。本计算取二者平均值为2.381KJ/Kg·K。1、液氮由工作温度上升到沸点温度吸收的热量(释放的冷量)Q1的计算如下:
[0012] Q1=cp1mΔt
[0013] 式中Q1-吸收的热量,KJ;cp1-液氮的比热容,KJ/Kg·K;
[0014] m-液氮的质量,Kg;
[0015] Δt——温差,K。
[0016] 则Q1=cp1mΔt
[0017] =2.381KJ/Kg·K×10000Kg×(273+196-273-172.56)K=558106.4KJ [0018] 表1液氮的定压热容(KJ/Kg·K)
[0019]
[0020] 2、液氮(-196℃)变成气态氮气(-172.56℃)的汽化潜热Q2计算 [0021] 查表得知,在压力P=0.8MPa,温度为-172.56℃的条件下,液氮的汽化热为r0=4600J/mol=164.29KJ/Kg,则液氮的汽化潜热为
[0022] Q2=r0×m-=164.29KJ/Kg×10000Kg=1642900KJ
[0023] 3、氮气由-172.56℃升高为20℃(即工艺氮气的使用温度)时吸收的热量Q3计算:由于氮气在不同压力、不同温度下,其定压热容是不同的,为计算精确,采用P=0.709MPa下(即工艺氮气的使用压力),在温升范围内,热容平均值计算的方法,由表2计算:
[0024] cp’=(35.36+33.46+32.24+31.82+31.50+31.25+31.06+30.75+30.47+30.23+30.02+29.83+29.67+29.45+29.33+29.28+29.24+29.23)/18=30.79(J/mol·K),换算成质量定-3
压热容为cp=cp’/(28×10 )=1.1KJ/Kg·K计算如下:
[0025] Q3=cpmΔt=1.1KJ/Kg.K×10000Kg×(172.56+20)K=2118160KJ [0026] 4、液氮吸收的总热量即释放的冷量Q为:
[0027] Q=Q1+Q2+Q3=558106.4KJ+1642900KJ+2118160KJ=4319166.4KJ [0028] 5、10吨液氮释放的冷负荷W为:W=Q/(24×3600)=50KW
[0029] 表2氮气的定压热容(J/mol·K)
[0030]
[0031] 6、冷却水系统水量的计算
[0032] 对于一般工艺冷却水来说,系统的供水温度为25℃,回水温度为20℃,水的定压比热为cp=4.19KJ/Kg·K,考虑水槽及管路的热交换的热量损失,其损失量 按5%计算,由公式Q=cpmΔt,则可以计算冷却水量,计算如下:
[0033] Q=cpmΔt
[0034] 则每小时的冷却水流量为m=Q×95%/(24×cpΔt)=4319166.4KJ×95%/(24h×4.19KJ/Kg·K×5K)=8160.7Kg/h
[0035] 7、经济效益分析
[0036] (1)初期投资:主要包括不锈钢保温型水箱、水泵、水浴式汽化器、管道附件、配管、自控系统的材料费用和安装费用。该部分费用见表3。
[0037] (2)冷冻机制冷量减少的投资:国内水冷螺杆冷冻机Q=50KW的价格为25000元。 [0038] (3)运行用电费用的计算:冷冻机的制冷效率=实际制冷量/输入功率,对于国内水冷螺杆冷冻机,其制冷效率(COP.)一般在5.0左右,制冷量为Q=50KW的冷冻机,其输入功率为:
[0039] 输入功率=实际制冷量/冷冻机的制冷效率=50KW/5.0=10KW。 [0040] 工业用电价格按0.8元/度计算,全年运行时间按350天,每天运行24小时,则制冷量Q=50KW的冷冻机全年运行电费为:
[0041] 10KW×350天×24小时×0.8元/度=67200元
[0042] 从表3中可以看出,采用该节能发明的初期投资费用为46000元,而节约资金栏内的前四项的总和为47000元,基本与初期投资抵消。每年运行用电费用67200元则是该节能发明的实际经济效果。
[0043] 表3经济效益分析表
[0044]
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用