会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 METHOD OF MANUFACTURING THIN PLATE MAGNET HAVING MICROCRYSTALLINE STRUCTURE PCT/JP1998/000330 1998-01-28 WO98035364A1 1998-08-13
A method of manufacturing an Nd-Fe-B microcrystalline permanent magnet which contains a low concentration of rare-earth elements, in which a soft magnetic phase and a hard magnetic phase are intermixed, which has, after cast, an inherent coercive force iHc of not less than 2.5 kOe and a residual flux density Br of not less than 9 kG, which has a cost-performance compared to that of a hard ferrite magnet, and which has a microcrystalline structure having a thickness of 70 mu m - 500 mu m and contributing to the size and thickness reduction of a magnetic circuit. The melt of an alloy with a specific composition is cast onto a rotating cooling roll in a low-pressure inert gas atmosphere with a pressure not higher than 30 kPa, and a microcrystalline permanent magnet alloy having a microcrystalline structure of 10 nm - 50 nm is directly manufactured from the alloy melt. By employing an alloy melt to which specific elements are added in this manufacturing process, a microcrystalline permanent magnet alloy such that the inherent coercive force iHc can be improved to be not less than 2.5 kOe, an optimum roll circumferential velocity range with which the hard magnetic characteristics can be exhibited can be widened in comparison with the range of the manufacturing conditions of Nd-Fe-B ternary magnet, and the thickness is 70 mu m - 500 mu m can be obtained.
102 Seltenerd-Permanentmagnetpulver, dieses enthaltender gebundener Magnet und den gebundenen Magneten verwendende Vorrichtung DE112013007128 2013-05-31 DE112013007128T5 2016-02-25 LI HONGWEI; LUO YANG; YU DUNBO; LI KUOSHE; YAN WENLONG; LI SHIPENG; YUAN YONGQIANG; PENG HAIJUN
Ein Seltenerd-Permanentmagnetpulver, ein dieses enthaltender gebundener Magnet und eine den gebundenen Magneten verwendende Vorrichtung sind in der vorliegenden Offenbarung bereitgestellt. Das Seltenerd-Permanentmagnetpulver umfasst: 70 Vol-% bis 99 Vol-% einer hartmagnetischen Phase und 1 Vol-% bis 30 Vol-% einer weichmagnetischen Phase, wobei die hartmagnetischen Phase eine TbCu7-Struktur aufweist und die Korngröße der hartmagnetischen Phase 5 nm bis 100 nm beträgt; die weichmagnetische Phase ist eine Fe-Phase mit einer bcc-Struktur, die mittlere Korngröße der weichmagnetischen Phase beträgt 1 nm bis 30 nm und die Standardabweichung der Korngröße beträgt unter 0,5 &sgr;.
103 РЕДКОЗЕМЕЛЬНЫЙ ПОСТОЯННЫЙ МАГНИТ RU2006103678 2006-02-08 RU2377681C2 2009-12-27 NAKAMURA KHADZIME; KHIROTA KOITI; SIMAO MASANOBU; MINOVA TAKEKHISA
Изобретениеотноситсяк порошковойметаллургии, вчастностик получениюспеченныхредкоземельныхпостоянныхмагнитовнаоснове R-Fe-B. Спеченныйредкоземельныйпостоянныймагнитсостава R1 aR2 bTcAaFeOfMg,, где R1 - поменьшеймереодинэлемент, выбранныйизредкоземельныхэлементов, включая Sc и Y, исключаяТb и Dy, R2 Tb и/или Dy, Т - железои/иликобальт, А - бори/илиуглерод, F - фтор, О - кислород, М - поменьшеймереодинэлемент, выбранныйизАl, Сu, Zn, In, Si, P, S, Ti, V, Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Таи W. Индексы a-g указываютатомныепроцентныесодержаниясоответствующихэлементовв сплавеи имеютзначения: 10≤a+b≤15, 3≤d≤15, 0,01≤е≤4, 0,04≤f≤4, 0,01≤g≤11, с - остальное. Втелемагнита F и R2 распределенытак, чтоихконцентрацияв среднемувеличиваетсяотцентрак поверхности. Границызеренимеютконцентрацию R2/(R1+R2) болеевысокую, чемконцентрация R2/(R1+R2) взернахпервичнойфазы (R1,R2)2T14A тетрагональнойсистемы, иобразуютструктурутрехмернойсетки, котораяявляетсянепрерывнойотповерхностимагнитадоглубиныпоменьшеймере 10 мкм. Спеченныймагнитобладаетвысокойкоэрцитивнойсилойи низкойнамагниченностью. 5 з.п. ф-лы, 2 ил., 3 табл.
104 DE60221448 2002-03-29 DE60221448T2 2007-11-29 MORIMOTO HITOSHI; KANEKO YUJI
A rare earth alloy sintered compact includes a main phase represented by (LR 1-x HR x ) 2 T 14 A, where T is Fe with or without non-Fe transition metal element(s); A is boron with or without carbon; LR is a light rare earth element; HR is a heavy rare earth element; and 0
105 DE60036586 2000-05-05 DE60036586D1 2007-11-15 YANG YINGCHANG; CHENG BENPEI; GE SENLIN
There is provided a multielement rare earth-iron interstitial permanent magnetic material having the formula of (R1- alpha R' alpha )x(Mo1- beta M beta )yFe100-x-y-zIz, wherein, R is a light rare earth element; R' is a heavy rare earth element; alpha is from 0.01 to 0.14; x is an atomic percent from 4 to 15; M is an element of IIIA, IVA, IVB, VB, VIB and VIIB families in the periodic table; beta is from 0.01 to 0.98; y is an atomic percent from 3 to 20; I is an element occupying the interstitial site of the crystal selected from the first and the second periodic groups. There is also provided a process for producing high performance anisotropic magnetic powder and magnet by using the above-mentioned material.
106 AT00109118 2000-05-05 AT374996T 2007-10-15 YANG YINGCHANG; CHENG BENPEI; GE SENLIN
There is provided a multielement rare earth-iron interstitial permanent magnetic material having the formula of (R1- alpha R' alpha )x(Mo1- beta M beta )yFe100-x-y-zIz, wherein, R is a light rare earth element; R' is a heavy rare earth element; alpha is from 0.01 to 0.14; x is an atomic percent from 4 to 15; M is an element of IIIA, IVA, IVB, VB, VIB and VIIB families in the periodic table; beta is from 0.01 to 0.98; y is an atomic percent from 3 to 20; I is an element occupying the interstitial site of the crystal selected from the first and the second periodic groups. There is also provided a process for producing high performance anisotropic magnetic powder and magnet by using the above-mentioned material.
107 DE19952619 1999-10-27 DE19952619B4 2007-05-10 XING LI-QIAN; ECKERT JUERGEN; ROTH STEFAN; LOESER WOLFGANG; SCHULTZ LUDWIG
108 DE60213642 2002-11-19 DE60213642T2 2006-12-07 KANEKIYO HIROKAZU; MIYOSHI TOSHIO; HIROSAWA SATOSHI
A nanocomposite magnet has a composition represented by (Fe1-mTm)100-x-y-z-nQxRyTizMn, where T is at least one of Co and Ni, Q is at least one of B and C, R is at least one rare earth element that always includes at least one of Nd and Pr and optionally includes Dy and/or Tb, and M is at least one element selected from the group consisting of Al, Si, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb. The mole fractions x, y, z, m and n satisfy 10 at %
109 DE69927931 1999-07-28 DE69927931D1 2005-12-01 KAMATA MASAMI; OBATA MICHIO; SATO YUICHI
110 DE60206031 2002-03-29 DE60206031D1 2005-10-13 MORIMOTO HITOSHI; KANEKO YUJI
A rare earth alloy sintered compact includes a main phase represented by (LR 1-x HR x ) 2 T 14 A, where T is Fe with or without non-Fe transition metal element(s); A is boron with or without carbon; LR is a light rare earth element; HR is a heavy rare earth element; and 0
111 DE60100923 2001-05-22 DE60100923T2 2004-05-19 KANEKIYO HIROKAZU; MIYOSHI TOSHIO; HIROSAWA SATOSHI; SHIGEMOTO YASUTAKA; SHIOYA YUSUKE
An iron-based rare earth alloy magnet has a composition represented by the general formula: (Fe1-mTm)100-x-y-zQxRyMz, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C; R is at least one rare earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti. In this formula, the mole fractions x, y, z and m meet the inequalities of: 10 at%
112 DE60100923 2001-05-22 DE60100923D1 2003-11-13 KANEKIYO HIROKAZU; MIYOSHI TOSHIO; HIROSAWA SATOSHI; SHIGEMOTO YASUTAKA; SHIOYA YUSUKE
An iron-based rare earth alloy magnet has a composition represented by the general formula: (Fe1-mTm)100-x-y-zQxRyMz, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C; R is at least one rare earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti. In this formula, the mole fractions x, y, z and m meet the inequalities of: 10 at%
113 Rare earth alloy sintered compact and method of making the same AU2002241342 2002-03-29 AU2002241342A1 2002-10-15 MORIMOTO HITOSHI; KANEKO YUJI
A rare earth alloy sintered compact includes a main phase represented by (LR 1-x HR x ) 2 T 14 A, where T is Fe with or without non-Fe transition metal element(s); A is boron with or without carbon; LR is a light rare earth element; HR is a heavy rare earth element; and 0
114 Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet AU8812301 2001-09-25 AU8812301A 2002-04-22 MURAKAMI RYO; KANEKIYO HIROKAZU; HIROSAWA SATOSHI
To make a raw alloy, consisting mostly of amorphous structure, highly productively and at a reduced cost for a nanocomposite magnet, a molten alloy represented by Fe 100-x-y-z R x Q y M z (where R is at least one element selected from Pr, Nd, Dy and Tb; Q is B and/or C; M is at least one element selected from Co, Al, Si, Ti, V, Cr, Mn, Ni, Cu, Ga, Zr, Nb, Mo, Ag, Pt, Au and Pb; and 1 at%‰¦x<6 at%, 15 at%‰¦y‰¦30 at% and 0 at%‰¦z‰¦7 at%) is prepared. This molten alloy is rapidly cooled by a strip casting process in which the alloy is fed onto a chill roller, rotating at a peripheral velocity of 3 m/s to less than 20 m/s, at a feeding rate per unit contact width of 0.2 kg/min/cm to 5.2 kg/min/cm. In this manner, an alloy including at least 60 volume percent of amorphous phase can be obtained.
115 Sm(co, fe, cu, zr, c) compositions and methods of producing same AU1708000 1999-10-25 AU1708000A 2000-05-22 GONG WEI; MA BAO-MIN
116 DE19626049 1996-06-28 DE19626049A1 1997-01-16 SAKURADA SHINYA; TSUTAI AKIHIKO; HIRAI TAKAHIRO; YANAGITA YOSHITAKA; SAHASHI MASASHI; ARAI TOMOHISA; HASHIMOTO KEISUKE
There is provided a magnetic material having a TbCu7 phase as a principal phase and excellent in residual magnetic flux density. This magnetic material is formed of a composition represented by a general formula:R1xR2yBzAuM100-x-y-z-uwherein R1 is at least one element selected from rare earth elements including Y; R2 is at least one element selected from Zr, Hf and Sc; A is at least one element selected from H, N, C and P; M is at least one element selected from Fe and Co; x, y, z and u represent are atomic percent individually defined as 2
117 Production of hard magnetic parts from samarium-iron-gallium-carbon based materials DE19521221 1995-06-14 DE19521221C1 1996-11-21 CAO LEI; HANDSTEIN AXEL; MUELLER KARL-HARTMUT; SCHULTZ LUDWIG
A process for producing hard magnetic parts from Sm2(Fe,M)17Cy-based materials (M = Ga and/or at least one metal serving to stabilise a rhombohedric 2:17 structure; and y <= 3) comprises (a) producing by melting an Sm2Fe17-xMxCy alloy with x > 0.1 and y >1; (b) subjecting this alloy after solidification to homogenising annealing at 900-1200 deg C; (c) comminuting the alloy to a powder; (d) intensively fine grinding the powder in a ball mill; (e) heat treating the finely-ground powder at 650-900 deg C; (f) pressing the thus-produced ultrafine grain Sm2Fe17-xMxCy magnetic powder to magnet bodies using a hot pressing process at 650-900 deg C; and (g) finally providing the magnet body with a magnetic privileged direction using a hot forming process at 650-900 deg C and 200 MPa.
118 Process for modifying magnetic materials and magnetic materials therefrom. GR950402505 1995-09-13 GR3017387T3 1995-12-31 COEY JOHN MICHAEL DAVID; SUN HONG; HURLEY DAVID PATRICK
119 DE4134245 1991-10-16 DE4134245C2 1995-10-19 KUHRT CHRISTIAN DIPL PHYS DR; KATTER MATTHIAS DIPL ING; WECKER JOACHIM DIPL PHYS DR
120 DE69017309 1990-08-22 DE69017309D1 1995-04-06 UEDA TOSHIO C O DOWA MINING CO; SATO YUICHI C O DOWA MINING CO; SENDA MASAYASU C O DOWA MINING; ISOYAMA SEIJI C O DOWA MINING; HISANO SEIICHI C O DOWA MINING
A permanent magnet made of an R-Fe-B-C or R-Fe-Co-B-C based alloy (where R is at least one rare-earth element) consisting of its individual magnetic crystal grains that are covered with an oxidation-resistant protective film is promising as a practicable next-generation magnet because of its having not only excellent magnetic properties inclusive of magnetic force that surpasses Sm-Co based magnets but also such highly improved oxidation resistance that may withstand use in practical applications for a prolonged time period without being coated on its outermost exposed surface with an oxidation-resistant protective film. Said protective film surrounding the individual magnetic crystal grains contains at least one, preferably substantially all, of the alloying elements of which said magnetic crystal grains are made, with 0.05 - 16 wt% of said protective film being composed of C in the R-Fe-B-C system and up to 16 wt% (not inclusive of zero wt%) of said protective film being composed of C and up to 30 wt% (not inclusive of zero wt%) being composed of Co in the R-Fe-Co-B-C system.