会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 67. 发明授权
    • 3C-SiC nanowhisker
    • 3C-SiC纳米晶须
    • US07521034B2
    • 2009-04-21
    • US11648569
    • 2007-01-03
    • Toshihiro AndoMika GamoYafei Zhang
    • Toshihiro AndoMika GamoYafei Zhang
    • C01B31/36
    • B82Y30/00C01B32/956C01P2002/72C01P2002/80C01P2004/04C01P2004/16C01P2004/51C01P2004/64C30B11/00C30B25/005C30B25/105C30B29/36C30B29/605C30B29/62Y10S423/10Y10T428/259Y10T428/2993
    • 3C-SiC nanowhisker and a method of synthesizing 3C-SiC nanowhisker wherein its diameter and length can be controlled. The method is safe and low cost, and the whisker can emit visible light of various wavelengths. 3C-SiC nanowhisker is formed by depositing thin film (2) made of a metal element on Si substrate (1), placing this Si substrate (1) into a plasma CVD apparatus, and holding it for predetermined time at predetermined substrate temperature in the plasma consisting of hydrogen and hydrocarbon. Si of Si substrate (1) and C in plasma dissolve at supersaturation into metal liquid particles (3), 3C-SiC nanowhisker (4) grows on the metal liquid particles (3), whisker surface is terminated with H so as to maintain the diameter constant, and the metal liquid particles (3) at whisker root take in Si from Si substrate (1) and penetrate into Si substrate (1).
    • 3C-SiC纳米晶须及其可以控制其直径和长度的3C-SiC纳米晶须的合成方法。 该方法安全,成本低,晶须可以发出各种波长的可见光。 通过在Si衬底(1)上沉积由金属元素制成的薄膜(2)来形成3C-SiC纳米晶须,将该Si衬底(1)放置在等离子体CVD装置中,并在预定的衬底温度下将其保持在预定时间 由氢和烃组成的等离子体。 Si衬底(1)中的Si和等离子体中的C在过饱和时溶解成金属液体颗粒(3),3C-SiC纳米晶须(4)在金属液体颗粒(3)上生长,晶须表面用H终止,以保持 直径常数,晶须根部的金属液体颗粒(3)从Si基板(1)吸收Si并渗入Si基板(1)。
    • 69. 发明授权
    • Nanostructured titanium monoboride monolithic material and associated methods
    • 纳米结构单钛单体材料及相关方法
    • US07501081B2
    • 2009-03-10
    • US11698743
    • 2007-01-25
    • K. S. Ravi Chandran
    • K. S. Ravi Chandran
    • C22C29/14C22C1/05C04B35/58H01B1/08
    • C04B35/58071C04B35/581C04B35/645C04B2235/3813C04B2235/5276C04B2235/5296C04B2235/5436C04B2235/5463C04B2235/549C04B2235/96C30B25/005C30B29/10C30B29/605
    • A nanostructured monolithic titanium boride (TiB) material and methods of forming such a material are disclosed and described. This material has a room-temperature four-point flexural strength about three times that of commercially available titanium diboride (TiB2). The achievement of nanostructured internal microstructural arrangement having a network of interconnected titanium monoboride whiskers affords a very high strength to this material above some of the best ceramic materials available in the market. The material contains a small amount of titanium and a densifier, but it is largely made of TiB phase with substantially no TiB2. The nanostructured monolithic titanium boride material can be formed by high temperature processing of a powder precursor having carefully selected weight and size distributions of titanium powder, titanium diboride powder, and densifier powder. Potential applications of this material can include wear resistant components such as die inserts for extrusion dies, nozzles, armor, electrodes for metal refining etc. An important advantage of TiB over other hard ceramics is that TiB can be cut by electro-discharge machining (EDM) without difficulty, unlike most ceramics.
    • 公开并描述了纳米结构的整体式钛硼化物(TiB)材料和形成这种材料的方法。 该材料具有约为市售二硼化钛(TiB 2)的三倍的室温四点弯曲强度。 纳米结构的内部微结构布置的实现具有相互连接的钛单晶须晶的网络,为市场上可获得的一些最佳陶瓷材料提供了非常高的强度。 该材料含有少量的钛和致密剂,但它主要由基本上不含TiB 2的TiB相制成。 纳米结构的整体式钛硼化物材料可以通过具有仔细选择的钛粉末,二硼化钛粉末和增稠剂粉末的重量和尺寸分布的粉末前体的高温加工形成。 这种材料的潜在应用可以包括耐磨组件,例如用于挤出模具的模具插入件,喷嘴,装甲,用于金属精炼等的电极.TiB比其它硬质陶瓷的重要优点是TiB可以通过放电加工(EDM )没有困难,不像大多数陶瓷。
    • 70. 发明授权
    • Optical device with IrOx nanostructure electrode neural interface
    • 具有IrOx纳米结构电极神经界面的光学器件
    • US07494840B2
    • 2009-02-24
    • US11496157
    • 2006-07-31
    • Fengyan ZhangSheng Teng Hsu
    • Fengyan ZhangSheng Teng Hsu
    • H01L21/00
    • C30B25/00A61N1/0543B82Y5/00B82Y10/00B82Y30/00C30B29/16C30B29/605Y10S977/811Y10S977/904Y10S977/932
    • An optical device with an iridium oxide (IrOx) electrode neural interface, and a corresponding fabrication method are provided. The method provides a substrate and forms a first conductive electrode overlying the substrate. A photovoltaic device having a first electrical interface is connected to the first electrode. A second electrical interface of the photovoltaic device is connected to a second conductive electrode formed overlying the photovoltaic device. An array of neural interface single-crystal IrOx nanostructures are formed overlying the second electrode, where x≦4. The IrOx nanostructures can be partially coated with an electrical insulator, such as SiO2, SiN, TiO2, or spin on glass (SOG), leaving the IrOx distal ends exposed. In one aspect, a buffer layer is formed overlying the second electrode surface, made from a material such as LiNbO3, LiTaO3, or SA, for the purpose of orienting the growth direction of the IrOx nanostructures.
    • 提供了具有氧化铱(IrOx)电极神经接口的光学器件及相应的制造方法。 该方法提供了一个衬底并且形成了覆盖衬底的第一导电电极。 具有第一电接口的光电器件连接到第一电极。 光电器件的第二电接口连接到形成在光伏器件上的第二导电电极。 形成了覆盖第二电极的神经界面单晶IrOx纳米结构阵列,其中x <= 4。 IrOx纳米结构可以部分地涂覆有电绝缘体,例如SiO 2,SiN,TiO 2或旋转玻璃(SOG),留下IrOx远端暴露。 在一个方面,为了定向IrOx纳米结构的生长方向,形成了由诸如LiNbO 3,LiTaO 3或SA的材料制成的第二电极表面上的缓冲层。