会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Method for correcting optical wavefront errors and optical system, such as a telescope, produced accordingly
    • 用于校正光学波前误差的方法和诸如望远镜的光学系统相应地产生
    • US06426834B1
    • 2002-07-30
    • US09502044
    • 2000-02-11
    • Bernhard BrauneckerMassimo Biber
    • Bernhard BrauneckerMassimo Biber
    • G02B2306
    • G02B17/0888G02B17/0832G02B17/0848G02B27/0025G02B27/0037G02B27/4205G02B27/4294
    • In a method for correcting optical wavefront errors in an optical system, the optical wavefront is calculated for different wavelengths and fields of view between the entry pupil (EP) and exit pupil (AP). Any phase differences are compensated by at least one surface (5, 7) compensating the phase differences in the beam path. A particular optical system, expediently in the form of a telescope, accordingly has a beam path which comprises the following: a first reflector (3), arranged along its axis (A), for reflecting a beam (1) incident along an optical axis (O) onto a concave second reflector (4) which throws the beam obtained from the first reflector (3) onto a third reflector (5), from which it is passed to a concave fourth reflector (6) in order to be reflected at an angle with said optical axis (O). Such a means (5, 7) for correcting the wavefront errors is provided in the beam path of such an optical system. The axis (A) of the first reflector (3) can optionally make an angle (&agr;) of 0° with the optical axis (O); the means (5, 7) permits the correction of asymmetry errors resulting from the angular position.
    • 在用于校正光学系统中的光学波前误差的方法中,针对入射光瞳(EP)和出射光瞳(AP)之间的不同波长和视野计算光学波前。 通过补偿光束路径中的相位差的至少一个表面(5,7)来补偿任何相位差。 相应地,以望远镜形式的特定光学系统具有包括以下的光束路径:沿其轴线(A)布置的第一反射器(3),用于反射沿光轴入射的光束(1) (O)移动到将从第一反射器(3)获得的光束投射到第三反射器(5)上的凹入的第二反射器(4)上,从而从第二反射器(5)传递到第四反射器(6),以便在 与所述光轴(O)成一角度。 在这种光学系统的光束路径中提供了用于校正波前误差的这种装置(5,7)。 第一反射器(3)的轴线(A)可以可选地与光轴(O)形成0°的角度(α)。 装置(5,7)允许校正由角位置产生的不对称误差。
    • 4. 发明授权
    • Process for measuring the inclination of boundary areas in an optical
system using interferometry to extract reflections from
disturbance-generating boundary areas
    • 用于使用干涉测量来测量来自扰动产生边界区域的反射的光学系统中的边界区域的倾斜度的处理
    • US5519491A
    • 1996-05-21
    • US211174
    • 1994-03-23
    • Bernhard GaechterBernhard Braunecker
    • Bernhard GaechterBernhard Braunecker
    • G01B9/02G01B11/24G01B11/255G01D5/26G01D5/28G01B11/00G01B11/02
    • G01B11/255G01B9/0209G01D5/266
    • The description relates to the measurement of the inclination of boundary areas in an optical system and a device for implementing the process. Starting with an auto-collimation process which determines the inclination of this boundary area in relation to a reference axis from the deviation of a light beam collimated onto the boundary area to be investigated and reflected on a position-sensitive photodetection system, a twin-beam interferometer process with downstream evaluation electronics is provided which permits the separation of the interferogram, intensity-modulated according to the invention, of the boundary area to be investigated from the unmodulated disturbance reflections of those not to be investigated as far as the interferogram intensities in the photon-noise range and thus offers a resolution in the deviation of the center of gravity of the interferogram of the order of 10 nm. To modulate the intensity of the interferogram, the difference in the optical distance between the reference and test beams to the boundary area to be investigated is time-modulated.
    • PCT No.PCT / EP92 / 02497第 371日期1994年3月23日 102(e)1994年3月23日PCT提交1992年10月30日PCT公布。 出版物WO93 / 09395 日期:1993年5月13日。该描述涉及光学系统中边界倾斜度的测量以及用于实现该过程的装置。 从自动准直处理开始,该自动准直处理确定该边界区域相对于参考轴线的倾斜度与准直到要检测并在位置敏感光电检测系统上反射的边界区域的光束的偏差,双光束 提供了具有下游评估电子学的干涉仪方法,其允许根据本发明对要研究的边界区域进行强度调制的干涉图从未被研究的干扰反射区域中分离干涉图的强度 光子噪声范围,从而提供10nm量级干涉图的重心偏差的分辨率。 为了调制干涉图的强度,参考和测试光束之间的光学距离与要研究的边界区域的差异是时间调制的。
    • 5. 发明授权
    • Process and apparatus for testing optical components or systems
    • 用于测试光学元件或系统的工艺和设备
    • US5289254A
    • 1994-02-22
    • US768523
    • 1992-02-06
    • Bernhard BrauneckerBernhard GaechterAndre Huiser, deceased
    • Bernhard BrauneckerBernhard GaechterAndre Huiser, deceased
    • G01M11/02G01B9/00
    • G01M11/0228
    • Process and apparatus for testing optical components (12) or systems which are contained in an apparatus consisting of a focusing optical system (1) and a space-resolving light detector (2) close to the focal plane thereof, it being provided that a source (3), containing a collimator (32), for a narrowly delimited precisely parallel light beam with a plane wavefront is moved rectilinearly in a plane parallel to the wavefront, at a plurality of positions of the source (3) the signal of the light detector (2) is determined, tilting movements of the source (3) perpendicular to the line direction are detected by an apparatus with a second collimator (52) and space-sensitive detector (51), and the aperture of the optical system (1) is scanned twice with line directions rotated relative to one another through approximately 90.degree., and in addition an individual line coming close to the axis of rotation is scanned in a position rotated through approximately 45.degree..
    • PCT No.PCT / EP91 / 00219 Sec。 371日期:1992年2月6日 102(e)日期1992年2月6日PCT 1991年2月5日PCT PCT。 出版物WO91 / 日期:1991年8月22日。用于测试由聚焦光学系统(1)和靠近其焦平面的空间分辨光检测器(2)组成的设备中的光学部件(12)或系统的测试过程和装置 设置在源极的多个位置处,包括准直器(32)的用于狭窄界定的具有平面波前的精确平行光束的源(3)在平行于波前的平面中直线移动 3)确定光检测器(2)的信号,通过具有第二准直器(52)和空间敏感检测器(51)的装置检测垂直于线方向的源极(3)的倾斜运动,并且 光学系统(1)的孔径被扫描两次,线相对于彼此旋转大约90度,另外靠近旋转轴线的单独的线被扫描在大约45度旋转的位置。
    • 6. 发明授权
    • Method for zero-contact measurement of topography
    • 地形零接触测量方法
    • US08908191B2
    • 2014-12-09
    • US13202560
    • 2010-02-19
    • Theo TschudiBernhard Braunecker
    • Theo TschudiBernhard Braunecker
    • G01B11/02G01B11/24G01M11/02B24B49/12B24B17/04
    • G01B11/2441B24B17/04B24B49/12G01M11/025
    • A method for zero-contact measurement of the topography of a spherically or aspherically curved air-glass surface of an optical lens or lens combination, distinguished in that the surface (S1) to be measured is sampled on its glass rear side with an optical measurement beam through the air-glass surface (S2) lying before it in the measurement direction. A device for carrying out the method is characterized in that a) the optical lens (2) or the lens system is fastened on the end side of a rotatably mounted hollow shaft (1) such that the optical axis of the lens or lens system is at least approximately aligned with the rotation axis (3) of the hollow shaft (1), b) focusing optics (6) for an optical measurement beam (10) are arranged inside the hollow shaft, c) the measurement unit (7) for generating the measurement beam (10) is arranged so as to be displaceable perpendicularly to the rotation axis (3) of the hollow shaft (1), d) at least one beam splitter (11) for separating a partial beam and forwarding it onto at least one optical sensor (12) is inserted into the measurement beam (10), and e) an optoelectronic transducer and evaluation electronics are assigned to the sensor (12).
    • 用于对光学透镜或透镜组合的球形或非球面弯曲的气泡玻璃表面的形貌进行零接触测量的方法,其特征在于待测量的表面(S1)在其玻璃后侧采用光学测量 通过位于测量方向上的气玻璃表面(S2)。 用于执行该方法的装置的特征在于:a)将光学透镜(2)或透镜系统紧固在可旋转地安装的中空轴(1)的端侧,使得透镜或透镜系统的光轴为 至少大致与中空轴(1)的旋转轴线(3)对准,b)用于光学测量梁(10)的聚焦光学元件(6)布置在空心轴内部,c)用于 产生测量光束(10)被布置成垂直于中空轴(1)的旋转轴线(3)移动,d)至少一个分束器(11),用于分离部分光束并将其转发到 至少一个光学传感器(12)被插入到测量光束(10)中,并且e)将光电转换器和评估电子器件分配给传感器(12)。
    • 7. 发明授权
    • Optoelectronic angle sensor and method for determining a rotational angle about an axis
    • 光电角度传感器和用于确定围绕轴线的旋转角度的方法
    • US08462979B2
    • 2013-06-11
    • US12377445
    • 2007-08-16
    • Bernhard BrauneckerPeter KipferHeinz Lippuner
    • Bernhard BrauneckerPeter KipferHeinz Lippuner
    • G06K9/00
    • G01D5/34776G01D5/3473
    • The invention relates to an optoelectronic angle sensor (1a) for determining a rotational angle about an axis (6), comprising a circular disk (2a) that can be rotated about the axis. Said circular disk comprises a coding, essentially over the entire surface, a flat photosensitive detector (3a), a device for producing an evaluable image of the coding on the detector and a memory and evaluation component (4a) for determining the rotational angle. A largely complete, or in particular an entire image of the coding is produced on the detector. The rotational angle is determined using a parameter-varying stochastic comparison method, from the image and a parameterised electronic reference pattern that is provided by means of the memory and evaluation component.
    • 本发明涉及一种用于确定围绕轴线(6)的旋转角度的光电子角度传感器(1a),包括可围绕轴线旋转的圆盘(2a)。 所述圆盘包括基本上在整个表面上的编码平板光敏检测器(3a),用于产生检测器上的编码的可评估图像的装置和用于确定旋转角度的存储器和评估部件(4a)。 在检测器上产生了一个很完整的,特别是整个编码的图像。 使用参数变化随机比较方法从图像和通过存储器和评估部件提供的参数化电子参考图案确定旋转角度。
    • 8. 发明授权
    • Method and system for determining position and orientation of an object
    • 用于确定物体的位置和方向的方法和系统
    • US07990550B2
    • 2011-08-02
    • US11908792
    • 2006-03-03
    • Beat AebischerBernhard BrauneckerPeter Kipfer
    • Beat AebischerBernhard BrauneckerPeter Kipfer
    • G01B11/14G01B11/26
    • G01S17/42G01C15/002
    • The invention relates to a positioning method for determining the position and orientation of a mobile unit having a receiver (3′), whereby the receiver (3′) is detected by a scanner (2′), said scanner (2′) determining at least the distance and a direction in relation to the receiver (3′). The radiation emitted by the sensor is detected by the receiver (3′) and the direction of incidence of radiation and the direction of incidence of radiation in relation to an axis of reception are derived while an offset of the incident radiation in relation to the axis of reception (EA) is determined. Position and orientation of the unit are derived from at least the distance, the direction in relation to the receiver (3′), the offset and the direction of incidence as the position information and the unit is optionally controlled via the optical connection (OV).
    • 本发明涉及一种用于确定具有接收器(3')的移动单元的位置和方向的定位方法,由此由扫描器(2')检测接收器(3'),所述扫描器(2')确定在 至少相对于接收器(3')的距离和方向。 由传感器发射的辐射由接收器(3')检测,并且导出相对于接收轴的辐射入射方向和辐射入射方向,而入射辐射相对于轴线的偏移 的接收(EA)。 位置和方位取决于至少距离,相对于接收器(3')的方向,偏移和入射方向,因为位置信息和单元可选地通过光学连接(OV)控制, 。