会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • METHOD FOR REPRODUCING A TARGET WAVEFRONT OF AN IMAGING OPTICAL PRODUCTION SYSTEM, AND METROLOGY SYSTEM FOR CARRYING OUT THE METHOD
    • US20230130187A1
    • 2023-04-27
    • US17969967
    • 2022-10-20
    • Carl Zeiss SMT GmbH
    • Lukas FischerKlaus GwoschMarkus KochMario LaengleDaniel Pagel
    • G03F7/20
    • An optical measuring system is used to reproduce a target wavefront of an imaging optical production system when an object is illuminated with illumination light. The optical measuring system comprises an object holder displaceable by actuator means and at least one optical component displaceable by actuator means. Within the scope of the target wavefront reproduction, a starting actuator position set (X0), in which each actuator is assigned a starting actuator position, is initially specified. An expected design wavefront (WD) which approximates the target wavefront and which the optical measuring system produces as a set wavefront is determined. A coarse measurement of a starting wavefront (W0) which the optical measuring system produces as actual wavefront after actually setting the starting actuator position set (X0) is carried out. Then, the object holder is adjusted by actuator means until a coarse target wavefront (W1) is obtained for a coarse actuator position set (X1) in the case of a minimum wavefront deviation between the actual wavefront and the design wavefront (WD). Said coarse target wavefront is then subjected to a fine measurement and the at least one optical component is displaced until a fine target wavefront (W2) is obtained for a fine actuator position set (X2) in the case of a minimum deviation between the actual wavefront setting-in in that case and the design wavefront (WD). This reproduction method allows wavefront deviations of the optical measuring system generated by way of targeted misalignment to provide a good approximation of corresponding deviations of the optical production system.