会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Glucose sensors and methods of manufacture thereof
    • 葡萄糖传感器及其制造方法
    • US08771500B2
    • 2014-07-08
    • US12256043
    • 2008-10-22
    • Fotios PapadimitrakopoulosSanthisagar Vaddiraju
    • Fotios PapadimitrakopoulosSanthisagar Vaddiraju
    • C12Q1/00G01N27/26G01N33/50G01F1/64
    • C12Q1/006A61B5/14532C01B13/0248C01B13/0259C01B13/0285C12Q1/003
    • Disclosed herein is a device that functions as a glucose sensor. The device has a reference electrode; a counter electrode, a working electrode; an electrically conducting membrane; an enzyme layer; a semi-permeable membrane; a first layer of a first hydrogel in operative communication with the working electrode; the first layer of the first hydrogel being operative to store oxygen; wherein the amount of stored oxygen is proportional to the number of freeze-thaw cycles that the hydrogel is subjected to; and a second layer of the second hydrogel. Disclosed too is a method that comprises using periodically biased amperometry towards interrogation of implantable glucose sensors to improve both sensor's sensitivity and linearity while at the same time enable internal calibration against sensor drifts that originate from changes in either electrode activity or membrane permeability as a result of fouling, calcification and/or fibrosis.
    • 这里公开了用作葡萄糖传感器的装置。 该装置具有参考电极; 对电极,工作电极; 导电膜; 酶层; 半透膜; 与工作电极操作性连通的第一水凝胶的第一层; 所述第一水凝胶的第一层用于储存氧气; 其中储存的氧气的量与水凝胶经受的冻融循环次数成比例; 和第二层水凝胶。 还公开了一种方法,其包括使用周期性偏置的电流分析法来询问可植入的葡萄糖传感器,以改善传感器的灵敏度和线性度,同时对来自电极活性或膜渗透性的变化的传感器漂移进行内部校准,这是由于作为 结垢,钙化和/或纤维化。
    • 5. 发明申请
    • SITE-SPECIFIC NANOPARTICLE SELF-ASSEMBLY
    • 现场特定的纳米材料自组装
    • US20080070354A1
    • 2008-03-20
    • US11454963
    • 2006-06-15
    • Faquir C. JainFotios Papadimitrakopoulos
    • Faquir C. JainFotios Papadimitrakopoulos
    • H01L21/338
    • H01L21/316H01L21/02175H01L21/02197H01L21/0237H01L21/02532H01L21/02601H01L21/02628H01L21/02639H01L29/66575Y10S977/84
    • Disclosed herein are methods of self-assembling nanoparticles on specific sites of a substrate. The method generally includes introducing a p-type dopant species to at least a portion of an n-type substrate or introducing an n-type dopant species to at least a portion of a p-type substrate, wherein the dopant species creates a surface charge opposite in polarity to that of the substrate surface prior to the introducing; contacting the nanoparticles with the surface of the substrate; and self-assembling a layer of the nanoparticles on p-type regions of the substrate. The methods described herein may be used in the formation of sub-22 nanometer channels, which find use in field-effect transistors, electronic chips, nanoscale biosensors, photonic band gap devices, lasers in optoelectronics and photonics chips, as well as nano-electro-mechanical devices (NEMS).
    • 本文公开了在衬底的特定位点上自组装纳米颗粒的方法。 该方法通常包括将p型掺杂剂物质引入n型衬底的至少一部分或将n型掺杂剂物质引入至p型衬底的至少一部分,其中掺杂剂物质产生表面电荷 在引入之前极性与基板表面的极性相反; 使纳米颗粒与基底的表面接触; 并且在衬底的p型区域上自组装纳米颗粒层。 本文描述的方法可用于形成亚22纳米通道,其用于场效应晶体管,电子芯片,纳米尺度生物传感器,光子带隙器件,光电子学和激光芯片中的激光器以及纳米电子 机电设备(NEMS)。
    • 9. 发明申请
    • Single-pass growth of multilayer patterned electronic and photonic devices using a scanning localized evaporation methodology (SLEM)
    • 使用扫描局部蒸发方法(SLEM)的多层图案化电子和光子器件的单通道生长
    • US20060118047A1
    • 2006-06-08
    • US11327756
    • 2006-01-09
    • Fotios PapadimitrakopoulosThomas Phely-BobinDeniel GranthamFaquir Jain
    • Fotios PapadimitrakopoulosThomas Phely-BobinDeniel GranthamFaquir Jain
    • C23C16/00
    • C23C14/042C23C14/246C23C14/26C23C14/568H01L51/56
    • The invention decribes an apparatus, Scanning Localized Evaporation Methodology (SLEM) for the close proximity deposition of thin films with high feature definition, high deposition rates, and significantly improved material economy. An array of fixed thin film heating elements, each capable of being individually energized, is mounted on a transport mechanism inside a vacuum chamber. The evaporable material is deposited on a heating element. The SLEM system loads the surface of heating elements, made of foils, with evaporable material. The loaded thin film heating element is transported to the substrate site for re-evaporation. The re-evaporation onto a substrate, which is maintained at the desired temperature, takes place through a mask. The mask, having patterned openings dictated by the structural requirements of the fabrication, may be heated to prevent clogging of the openings. The translation of the substrate past the evaporation site permits replication of the pattern over its entire surface. A multiplicity of fixed thin film heating element arrays is provided that can operate simultaneously or in sequence. Multi-layered structures of evaporable materials with high in-plane spatial pattern resolution can be deposited using this apparatus. In one version of the invention, the transport of the evaporant-loaded thin film heating elements is accomplished by the use of cylindrical rotors on whose circumference the heating elements are mounted.
    • 本发明描述了用于紧密沉积具有高特征定义,高沉积速率和显着改善的材料经济性的薄膜的扫描定位蒸发方法(SLEM)的装置。 一组固定的薄膜加热元件,每个固定的薄膜加热元件均能分别通电,安装在真空室内的输送机构上。 蒸发材料沉积在加热元件上。 SLEM系统用可蒸发材料加载由箔制成的加热元件的表面。 负载的薄膜加热元件被输送到基底部位以进行再蒸发。 通过掩模将保持在所需温度下的基底上的再蒸发发生。 可以加热具有由制造的结构要求所规定的图案化开口的掩模,以防止开口堵塞。 衬底经过蒸发位置的平移允许在其整个表面上复制图案。 提供了可以同时或依次操作的多个固定薄膜加热元件阵列。 可以使用该装置沉积具有高面内空间图案分辨率的蒸发材料的多层结构。 在本发明的一个实施例中,通过使用圆周转子来实现蒸发负载的薄膜加热元件的输送,圆柱形转子的圆周上装有加热元件。