会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Chondroitinase ABC isolated from proteus vulgaris ATCC 6896
    • 从普通寻常型ATCC 6896中分离的软骨素酶ABC
    • US5496718A
    • 1996-03-05
    • US082853
    • 1993-06-23
    • Nobukazu HashimotoHideo MochizukiAkio Hamai
    • Nobukazu HashimotoHideo MochizukiAkio Hamai
    • A61K38/43A61K38/00C12N9/16C12N9/20C12N9/88C01G17/04C12N1/12
    • C12N9/88A61K38/00G03C2001/0471Y10S435/873
    • A crystallizable, purified chondroitinase ABC having a molecular weight of about 100,000 dalton by the measurement of the SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and the measurement by the gel permeation chromatography method, having alanine as the N-terminal amino acid and proline as the C-terminal amino acid. A process for the purification of the crystallizable purified chondroitinase ABC comprising removing nucleic acid from an surfactant solution extract obtained from cells of chondroitinase ABC-producing microorganisms and chromatographically treating by concentration gradient elution using a weak cation exchange resin or a strong cation exchange resin. A composition comprising a chondroitinase and serum albumin, gelatin, or a nonionic surfactant. The chondroitinase ABC is isolated from Proteus vulgaris ATCC 6896.
    • 通过SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)的测量和通过凝胶渗透色谱法测定的具有约100,000道尔顿分子量的可结晶纯化的软骨素酶ABC,其具有丙氨酸作为N-末端氨基酸和脯氨酸 作为C末端氨基酸。 一种用于纯化可结晶的纯化软骨素酶ABC的方法,包括从获自软骨素酶ABC微生物的细胞获得的表面活性剂溶液提取物中除去核酸,并使用弱阳离子交换树脂或强阳离子交换树脂进行色谱法处理。 包含软骨素酶和血清白蛋白,明胶或非离子表面活性剂的组合物。 软骨素酶ABC从普通变形杆菌ATCC 6896中分离。
    • 10. 发明授权
    • Process for preparing 6-aminopenicillanic acid
    • 制备6-氨基苯甲酸的方法
    • US4113566A
    • 1978-09-12
    • US745212
    • 1976-11-26
    • James J. HamsherMerrill Lozanov
    • James J. HamsherMerrill Lozanov
    • C12N11/00A61K31/43C07D20060101C07D499/04C07D499/08C07D499/42C07D499/78C12P20060101C12P37/00C12P37/04C12P37/06C12D13/06
    • C07D499/42Y10S435/873
    • A simple and efficient process for the deacylation of penicillins to 6-aminopenicillanic acid in which an aqueous penicillin solution is rapidly recirculated through a shallow bed comprising particulate immobilized penicillin acylase at 15.degree.-45.degree. C and pH 6.5-9.0 until substantial conversion results.BACKGROUND OF THE INVENTIONThis invention relates to penicillins. More specifically, it relates to the enzymatic deacylation of penicillins to 6-aminopenicillanic acid.6-Aminopenicillanic acid, commonly referred to as 6-APA, is an intermediate in the manufacture of synthetic penicillins and is prepared among other means by the deacylation of penicillins. This conversion has been effected by both chemical and biochemical techniques. The chemical conversion, as exemplified by U.S. Pat. No. 3,499,909, suffers from being a multi-step process requiring energy-intensive low-temperature conditions and specialized equipment. The biochemical conversion utilizes the enzyme penicillin acylase, or penicillin amidase. In U.S. Pat. No. 3,260,653, the enzyme activity is supplied by certain bacteria or bacterial extracts. This approach is not entirely satisfactory for the industrial production of 6-APA since the product stream is contaminated with the enzyme and/or microbial cells, which must then be removed during product recovery, and the enzyme is used only once. The problems of product contamination and poor enzyme utilization are purportedly overcome in U.S. Pat. No. 3,953,291 by the use of immobilized penicillin amidase-producing microbial cells. Such a process using immobilized cells is still characterized by low productivity, however, since in batch operation the process suffers from its non-continuous nature and excessive handling of the immobilized cell material, while in column operation it suffers from poor pH control and less than optimum enzyme utilization.The use of a shallow bed of microbial cell catalyst for the continuous isomerization of glucose to fructose is disclosed in U.S. Pat. Nos. 3,694,314 and 3,817,832. The shallow bed is reportedly employed to minimize the pressure drop through the catalyst, the desired conversion being achieved by passing the aqueous process stream through several beds in series.SUMMARY OF THE INVENTIONIt has now been found that penicillins can be converted to 6-APA in a simple and efficient manner by rapidly recirculating an aqueous penicillin solution through a shallow bed comprising particulate penicillin acylase catalyst under controlled temperature and pH conditions. Accordingly, the present invention entails a process for the enzymatic conversion of a penicillin to 6-APA which comprises recirculating an aqueous solution of the penicillin through a bed up to about 6 cm deep comprising particulate immobilized penicillin acylase catalyst at a flow rate of at least 0.4 bed volume per minute while maintaining the solution at a temperature of from about 15.degree. to 45.degree. C. and a pH from about 6.5 to 9.0 and continuing the recirculation until the penicillin is substantially converted to 6-APA. Preferably the penicillin is potassium penicillin G, the bed has a depth of from about 2 to 3 cm, the particulate catalyst comprises immobilized Proteus rettgeri cells containing the enzyme, the temperature is about 35.degree. to 40.degree. C. and the pH is from about 7.5 to 8.2.DETAILED DESCRIPTION OF THE INVENTIONThe process of the present invention, in rapidly recirculating the process stream through a shallow bed of particulate catalyst, is thus able to optimize the conversion of penicillins to 6-APA since it overcomes the heretofore unsolved problems of pH and flow control associated with continuous column deacylation and of excessive catalyst handling with batch deacylations. The capability of the process to control pH is especially significant since the deacylation generates a carboxylic acid which must be neutralized, the enzyme is optimally active over a narrow pH range and both the reactant and product are sensitive to pH extremes. Since this control is accomplished with a minimum of pressure drop through the bed, the process has the further advantage of utilizing standard process equipment.The process is suitable for the deacylation of any water-soluble penicillin. Representative penicillins include but are not limited to penicillin G (benzylpenicillin), penicillin X (p-hydroxybenzylpenicillin) and penicillin V (phenoxymethylpenicillin). Preferred is penicillin G in the form of the potassium or sodium salt. The concentration of the penicillin substrate in the aqueous solution is not critical and normally varies from about 1 to 20 g/100 ml solution.By particulate immobilized penicillin acylase catalyst is meant the enzyme penicillin acylase, or any penicillin acylase-producing microorganism, entrapped within or attached to or on a water-insoluble particulate matrix of organic or inorganic origin in such a manner as to retain the enzyme's activity. Suitable penicillin acylase-producing microorganisms include those belonging to the general of Proteus, Escherichia, Streptomyces, Nocardia, Micrococcus, Pseudomonas, Alkaligenes and Aerobacter such as disclosed in U.S. Pats. Nos. 3,260,653 and 3,953,291. The common methods employed for such immobilization of enzymes and microbial cells include covalent bonding to the matrix, entrapment within the matrix, physical adsorption on the matrix and cross-linking with a bifunctional reagent to form the matrix. Illustrative of these immobilization techniques are those of U.S. Pats. Nos. 3,645,852, 3,708,397, 3,736,231, 3,779,869, 3,925,157, 3,953,291 and 3,957,580. As indicated by these references, the matrix is typically a polymer or copolymer of such monomers as glycidyl methacrylate methacrylic acid anhydride, acryloylamide, acrylamide, styrene, divinylbenzene or glucose, or the matrix may be of such substances as bentonite, powdered carbon, titania, alumina or glass. Preferred catalyst is one in which Proteus rettgeri cells containing penicillin acylase are immobilized by the process of U.S. Pat. No. 3,957,580. Such particulate catalysts will normally have an activity of from about 200 to 5,000 units (micromoles penicillin G deacylated per hour) per gram of dry catalyst.The particulate catalyst is utilized in the form of a shallow bed through which the process stream is rapidly recirculated. By shallow bed is meant a bed having a depth of up to about 6 cm. The actual depth of the bed is determined by the desired productivity of the conversion unit, the activity of the particulate catalyst and, in the case of immobilized microbial cell catalyst, the concentration of cells in the particulate catalyst. The bed should be deep enough to supply sufficient enzyme activity for the desired productivity of the unit and not so deep as to prevent the desired flow discussed hereinafter. At times it may be advisable to admix the catalyst with a particulate material such as diatomaceous earth, perlite or powdered cellulose added in the amount of up to about 80 volume percent of the bed to give the bed a more porous structure. Beds about 1 to 6 cm deep normally meet the desired productivity and flow requirements. Particularly suitable units for preparing such beds include standard filtration equipment such as a horizontal pressure leaf filter or a plate-and-frame filter press.The conversion is run under controlled temperature as well as pH conditions to maximize productivity while minimizing substrate, product and catalyst degradation. The temperature is limited to between about 15.degree. to 45.degree. C and preferably between about 35.degree. and 40.degree. C. The activity of the catalyst drops off considerably at temperatures much below 15.degree. C while temperatures much above 45.degree. C result in considerable decomposition of the penicillin and 6-APA and appreciable denaturization of the catalyst. As indicated hereinbefore, pH control is critical to high conversion of penicillin to 6-APA, and the pH of the process is therefore limited to from about 6.5 to 9.0. A pH much below 6.5 results in considerably reduced enzyme activity and in enhanced penicillin degradation, while a pH much greater than 9.0 accelerates not only penicillin degradation but also enzyme denaturization. The pH is preferably maintained between about 7.5 and 8.2 when the catalyst is derived from Proteus rettgeri.In practice, the bulk of the process stream is maintained at the desired temperature and pH in a stirred tank or reservoir. A small portion of the stream is continuously passed through the catalyst bed and quickly returned to the reservoir where the acid formed during the passage through the bed is neutralized by a suitable base such as sodium hydroxide to maintain the pH within the desired range. Such a system can be adapted to batch, semi-continuous or continuous operation.The flow rate of the process stream through the catalyst bed is also of critical importance in assuring optimum conversion of penicillins to 6-APA, and should be at least 0.4 bed volume per minute. Flow rates much below this value not only cause a considerable reduction of catalyst utilization resulting from poorer diffusion of the substrate and product within the catalyst bed but also enhance the degradation of substrate, product and catalyst from the increase localized acidity present in the bed.The recycling of the process stream through the catalyst bed is continued until the penicillin in the stream has been substantially (at least 80 percent) converted. The 6-APA in the stream may then be either isolated or reacted to a desired penicillin by conventional means.
    • 在床上,该方法具有利用标准工艺设备的进一步优点。