会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • INORGANIC NANOTUBES AND DEVICES FABRICATED THEREFROM
    • 无机纳米管及由此制造的器件
    • WO2008039579A2
    • 2008-04-03
    • PCT/US2007071300
    • 2007-06-15
    • UNIV CALIFORNIAYANG PEIDONGMAJUMDAR ARUNAVAFAN RONGKARNIK ROHITCASTELINO KENNETH
    • YANG PEIDONGMAJUMDAR ARUNAVAFAN RONGKARNIK ROHITCASTELINO KENNETH
    • C12M3/00
    • G01N27/4146B01L3/5027G01N27/4145
    • Nanofluidic devices are taught incorporating inorganic nanotubes fluidly coupled to channels or nanopores for supplying a fluid containing chemical or biochemical species. In one aspect, two channels are fluidly interconnected with a nanotube. Electrodes on opposing sides of the nanotube establish electrical contact with the fluid therein. A bias current is passed between the electrodes through the fluid, and current changes are detected to ascertain the passage of select molecules, such as DNA, through the nanotube. In another inventive aspect, a gate electrode is located proximal the nanotube between the two electrodes thus forming a nanofluidic transistor. The voltage applied to the gate controls the passage of ionic species through the nanotube selected as either or both ionic polarities. In either of these aspects the nanotube can be modified, or functionalized, to control the selectivity of detection or passage.
    • 教导纳米流体装置,其结合流体耦合到通道或纳米孔的无机纳米管,用于供应含有化学或生物化学物质的流体。 在一个方面,两个通道与纳米管流体相互连接。 纳米管相对侧上的电极与其中的流体建立电接触。 偏置电流通过流体在电极之间传递,并且检测电流变化以确定选择分子(例如DNA)通过纳米管的通过。 在另一发明方面,栅电极位于两个电极之间的纳米管附近,从而形成纳米流体晶体管。 施加到栅极的电压控制离子物质通过选择为或者两个离子极性的纳米管。 在这些方面中的任一方面中,纳米管都可以被改性或官能化,以控制检测或通过的选择性。
    • 6. 发明申请
    • METHODS TO PRODUCE ULTRA-THIN METAL NANOWIRES FOR TRANSPARENT CONDUCTORS
    • 生产超薄金属纳米线用于透明导体的方法
    • WO2016049430A8
    • 2017-04-20
    • PCT/US2015052180
    • 2015-09-25
    • UNIV CALIFORNIA
    • YANG PEIDONGSUN JIANWEIYU YICUI FAN
    • C07F1/08B22F1/00B22F9/24C01G3/00C01G3/04C01G3/05C01G3/08C07F7/08C07F7/12C07F7/18
    • C07F7/0896B22F1/0025B22F9/24B82B3/00C07F1/08C07F7/12C07F7/1844H01B1/02
    • The disclosure provides methods to produce ultrathin metal nanowires and methods to produce ultrathin copper elongated nanostructures. Also claimed are the metal nanowires produced by these methods, and the use of the metal nanowires as transparent conductors. The claimed method comprises the steps of: a) forming a reaction mixture comprising a silane-based reducing agent, a copper metal salt and a surface ligand, wherein the surface ligand may also be a solvent; and b) heating and maintaining the reaction mixture at an elevated temperature between 1 to 48 hours with or without stirring. Examples for copper metal salts are Cul, CuBr, CuCI, CuF, CuSCN, CuCI2, CuBr2, CuF2, Cu(OH)2, Cu-D-gluconate, CuMo04, Cu(N03)2, Cu(Clo4) 2, CuP207, CuSe03, CuS04, Cu-tartrate, Cu(BF4)2, Cu(NH3) 4SO4, and including any hydrates of the foregoing. Examples for silane-based reducing agents are: trietylsilane, trimethylsilane, triisopropylsilane, triphenylsilane, tri-n-propylsilane, tri-n-hexylsilane, triethoxysilane, tris(trimethylsiloxy)silane, tris(trimethylsilyl)silane, di-tert- butylmethylsilane, diethylmethylsilane, diisopropylchlorosilane, dimethylchlorosilane, dimethylethoxysilane, diphenylmethylsilane, ethyldimethylsilane, ethyldichlorosilane, methyldichlorosilane, methyldiethoxysilane, octadecyldimethylsilane, phenyldimethylsilane, phenylmethylchlorosilane, l,l,4,4-tetramethyl-l,4-disilabutane, trichlorosilane, dimethylsilane, di-tert-butylsilane, dichlorosilane, diethylsilane, diphenylsilane, phenylmethylsilane, n-hexylsilane, n- octadecylsilane, n-octylsilane, and phenylsilane. Examples for surface ligands are oleylamine, trioctylphosphine oxide, oleic acid, 1,2-hexadecanediol, trioctylphosphine, or any combination of the foregoing. Examples for devices where said transparent conductors are of use are: LCD display, a LED display, a photovoltaic device, a touch panel, a solar panel, a light emitting diode (LED), an organic light emitting diode (OLED), an OLED display, and a electrochromic window.
    • 本公开提供了生产超薄金属纳米线的方法和生产超薄铜细长纳米结构的方法。 还要求保护通过这些方法生产的金属纳米线,以及使用金属纳米线作为透明导体。 要求保护的方法包括以下步骤:a)形成包含硅烷基还原剂,铜金属盐和表面配体的反应混合物,其中表面配体也可以是溶剂; 和b)在搅拌或不搅拌下将反应混合物在1至48小时的升高的温度下加热并保持。 铜金属盐的例子是CuI,CuBr,CuCl,CuF,CuSCN,CuCl 2,CuBr 2,CuF 2,Cu(OH)2,Cu-D-葡萄糖酸盐,CuMoO 4,Cu(NO 3)2,Cu(Clo 4)2,CuP 2 O 7, CuSeO 3,CuSO 4,Cu-酒石酸盐,Cu(BF 4)2,Cu(NH 3)4 SO 4,并且包括前述的任何水合物。 为基于硅烷的还原剂的实例是:trietylsilane,三甲基硅烷,三异丙基硅烷,三苯基硅烷,三 - 正丙基硅烷,三 - 正己基硅烷,三乙氧基硅烷,三(三甲基硅氧基)硅烷,三(三甲基硅烷基)硅烷,二 - 叔butylmethylsilane,diethylmethylsilane ,diisopropylchlorosilane,二甲基氯硅烷,二甲基乙氧基硅烷,diphenylmethylsilane,ethyldimethylsilane,乙基二氯硅烷,甲基二氯硅烷,甲基二乙氧基硅烷,octadecyldimethylsilane,苯基二甲基硅烷,phenylmethylchlorosilane,1,1-,4,4-四甲基-1,4-二硅杂丁烷,三氯硅烷,二甲基硅烷,二叔丁基硅烷,二氯 二乙基硅烷,二苯基硅烷,苯基甲基硅烷,正己基硅烷,正十八烷基硅烷,正辛基硅烷和苯基硅烷。 表面配体的实例为油胺,氧化三辛基膦,油酸,1,2-十六烷二醇,三辛基膦或前述的任何组合。 其中所述透明导体有用的器件的例子是:LCD显示器,LED显示器,光伏器件,触摸板,太阳能电池板,发光二极管(LED),有机发光二极管(OLED),OLED 显示屏和电致变色窗口。