会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 空气动力升力 / 专利数据
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
181 LIFTING ENTRY/ATMOSPHERIC FLIGHT (LEAF) UNIFIED PLATFORM FOR ULTRA-LOW BALLISTIC COEFFICIENT ATMOSPHERIC ENTRY AND MANEUVERABLE ATMOSPHERIC FLIGHT AT SOLAR SYSTEM BODIES US14297370 2014-06-05 US20150210407A1 2015-07-30 KRISTEN S. GRIFFIN; JON CARPENTER; GREGORY J. LEE; AMY LO; RONALD POLIDAN; DANIEL SOKOL; BARNABY WAINFAN; WARREN JAMES; DENNIS POULOS
An aerial vehicle including a collapsible and inflatable vehicle body capable of being filled with a lighter than air gas so as to make the vehicle semi-buoyant or 100% buoyant at a predetermined altitude in an atmosphere above a solar system body. The vehicle body has a shape suitable to provide aerodynamic lift. The vehicle may include a propulsion device coupled to and extending from the vehicle body, where the device provides power to aerodynamically lift the vehicle above the 100% buoyant altitude to a higher altitude where the vehicle can maintain that altitude through the aerodynamic lift and vehicle buoyancy. The vehicle is configured to be deployed/inflated from a collapsed and stowed configuration to a deployed/inflated configuration in an orbit above the atmosphere of the solar system body, and is configured to enter the atmosphere in the inflated configuration and descend without propulsion.
182 HIGH-LIFT-GENERATING DEVICE, WING, AND NOISE-REDUCTION DEVICE FOR HIGH-LIFT-GENERATING DEVICE EP10799817.1 2010-07-12 EP2455282A1 2012-05-23 HIRAI, Makoto; TAKENAKA, Keizo; IMAMURA, Taro; YAMAMOTO, Kazuomi; YOKOKAWA, Yuzuru

In a high-lift-device, a wing, and noise reduction device for a high-lift-device that are capable of reducing noise generated when a flap is extended, preventing deterioration of aerodynamics characteristic when retracting the flap, and preventing an increase in weight, a flap main body (5) disposed so as to be extendable/retractable relative to a main wing and a protruding portion (6A-1) that smoothly protrudes at least at the vicinity of one end portion of a positive-pressure surface (PS) of the flap main body (5) in a direction away from the flap main body (5) are provided.

183 Golf ball with improved flight performance US11108812 2005-04-19 US07156757B2 2007-01-02 Laurent C. Bissonnette; Jeffrey L. Dalton; Steven Aoyama
A golf ball with aerodynamic coefficient magnitude and aerodynamic force angle, resulting in improved flight performance, such as increased carry and flight consistency regardless of ball orientation. In particular, the present invention is directed to a golf ball having increased flight distance as defined by a set of aerodynamic requirements at certain spin ratios and Reynolds Numbers, and more particularly the golf ball has a low lift coefficient at a high Reynolds Number.
184 Golf ball with improved flight performance US11907195 2007-10-10 US20080153630A1 2008-06-26 Laurent C. Bissonnette; Jeffrey L. Dalton; Steven Aoyama
A golf ball with aerodynamic coefficient magnitude and aerodynamic force angle, resulting in improved flight performance, such as increased carry and flight consistency regardless of ball orientation. In particular, the present invention is directed to a golf ball having increased flight distance as defined by a set of aerodynamic requirements at certain spin ratios and Reynolds Numbers, and more particularly the golf ball has a low lift coefficient at a high Reynolds Number.
185 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法 PCT/JP2011/074176 2011-10-20 WO2012053602A1 2012-04-26 深見 浩司

 翼根側のコード長の上限値が制限された条件下で、所望の空力特性を得ることができる風車翼を提供する。翼先端(1b)側から翼根(1a)側にかけてコード長が増大する翼本体部(3)を備えている。翼本体部(3)は、その先端側にて、略一定の第1設計揚力係数とされた状態で、翼根(1a)側に向けてコード長が漸次増大する翼先端領域(1c)と、翼根(1a)側の最大コード長となる位置にて、第1設計揚力係数よりも大きい第2設計揚力係数を有する最大コード長位置(1d)と、翼先端領域(1c)と最大コード長位置(1d)との間に位置する遷移領域(1e)とを有する。遷移領域(1e)の設計揚力係数は、翼先端(1b)側から翼根(1a)側に向かって、第1設計揚力係数から第2設計揚力係へと漸次増大させられている。

186 WIND TURBINE BLADE, WIND POWER GENERATION SYSTEM INCLUDING THE SAME, AND METHOD FOR DESIGNING WIND TURBINE BLADE EP16198206.1 2011-10-20 EP3179095A1 2017-06-14 FUKAMI, Koji

Provided is a wind turbine blade that delivers the desired aerodynamic characteristics under conditions where the upper limit of the chord length near the blade root is limited. The wind turbine blade includes a blade body (3) whose chord length increases from a blade tip (1b) toward a blade root (1a). The blade body (3) includes a blade tip region (1c) located near the blade tip and whose chord length increases gradually toward the blade root (1a), the blade tip region (1c) having a substantially constant first design lift coefficient, a maximum-chord-length position (1d) located near the blade root (1a) and having a maximum chord length, the maximum-chord-length position (1d) having a second design lift coefficient higher than the first design lift coefficient, and a transition region (1e) located between the blade tip region (1c) and the maximum-chord-length position (1d). The transition region (1e) has a design lift coefficient increasing gradually from the first design lift coefficient to the second design lift coefficient in a direction from the blade tip (1b) toward the blade root (1a).

187 TWIN HULL WATERCRAFT WITH AERODYNAMIC-LIFT PRODUCING SUPERSTRUCTURE PCT/EP1993000895 1993-04-13 WO1993021060A1 1993-10-28
A marine craft provided with a completely immersed fusiform twin hull (10), from which project vertical support structures (11) for a load platform (12), of the type called SWATH, characterized in that the said load platform has a vertical longitudinal section (13) shaped as a wing contour, that is, suitable for producing aerodynamic lift.
188 高揚力発生装置、翼および高揚力発生装置の騒音低減装置 PCT/JP2010/061777 2010-07-12 WO2011007759A1 2011-01-20 平井 誠; 竹中 啓三; 今村 太郎; 山本 一臣; 横川 譲

 フラップを展開した際に発生する騒音の低減を図るとともに、フラップを収納した際の空力特性の劣化を抑制し、かつ、重量の増加を抑制することができる高揚力発生装置、翼および高揚力発生装置の騒音低減装置である。母翼に対して展開収納可能に配置されたフラップ本体(5)と、フラップ本体(5)の正圧面(PS)における少なくとも一方の端部の近傍に、フラップ本体(5)から離れる方向に滑らかに突出する突出部(6A-1)と、が設けられている。

189 Dispositif de simulation des efforts aérodynamiques appliqués sur deux gouvernes orientables d'un engin tel qu'un missile EP97402291.5 1997-10-01 EP0838673A1 1998-04-29 Petit, Patrick; Mahoux, Alain

Afin de simuler en laboratoire les efforts aérodynamiques dus à la portance et au braquage des deux gouvernes (12) orientables d'un engin (10), il est proposé un dispositif de simulation. Ce dispositif comprend notamment deux pièces d'ancrage (16), prévues pour être fixées sur les gouvernes (12), un système (26) de mise en tension, appliquant sur les gouvernes un effort de traction réglable simulant la portance, et deux systèmes (28) d'application de couples résistants, appliquant indépendamment sur chacune des gouvernes un couple résistant proportionnel à son braquage.

190 フライングディスク JP2015122410 2015-06-02 JP2016221202A 2016-12-28 柴崎 威暢
【課題】飛行中に係る空力的不安定性を相対風の誘導により解消し、水平位に安定した長距離飛行を可能とするフライングディスクの形状を得る。
【解決手段】揚力の不足する後翼においては後翼下方に相対風を誘導し、回転で生じる片翼の揚力の不足においては回転に沿う流れで不足する片翼下方へ相対風を誘導し、前後左右の揚力差を同時解消する形状を得る。
【選択図】図2
191 AN ELECTRICAL POWER GENERATION ASSEMBLY PCT/GB2004/002128 2004-05-18 WO2004104413A1 2004-12-02 KNOTT, David, Sydney

An electrical power generation assembly (10) comprises a main body (12) having a low density to provide lift and wind driven means (18) on a surface of the main body (12) to generate electrical power. The main body (12) has an aerodynamic prismatic shape and has a part-circular, or a part-elliptical, cross-section frontal region (27).

192 Rotor platform of aerodynamic force and method of aerodynamic force generation EP10185266.3 2010-10-01 EP2306000A1 2011-04-06 Klimov, Vyacheslav Stepanovich; Klimov, Oleg Vyacheslavovich

Rotor platform of aerodynamic force is meant for generating aerodynamic lift force in horizontal position and aerodynamic transverse force in vertical position, with further practical implementation as a robust power installation of transport vehicle facilities.

The principle of operation of the platform is based on the well-known Magnus effect - generation of transverse force acting on an object spinning in the ambient air flow. The basis of the construction is the unit of several coplanar rotors, wherein the rotors spinning is caused by the air flow force and the rotors provide the summed value of the generated aerodynamic force.

193 HYBRID DRIVE ENGINE PCT/US2014/061478 2014-10-21 WO2015061254A1 2015-04-30 BOSLEY, David

A hybrid drive engine uses air foil shaped disks of a first configuration for a compressor portion thereof and air foil shaped disks of a second configuration for a turbine portion thereof, whereby the disks exhibit aerodynamic effects of lift. Particularly, the compressor disks are configured to cause aerodynamic lift off of a periphery of the disks, while the turbine disks are configured to cause aerodynamic lift off of an inner hole of the disks. The aerodynamic nature of the disks cause each disk thereof to form two opposing airfoil shapes either head to head or trailing edge to trailing edge across the through hole.

194 WIND TURBINE, WIND POWER GENERATION DEVICE PROVIDED THEREWITH, AND WIND TURBINE DESIGN METHOD EP11834441 2011-10-20 EP2631474A4 2015-05-06 FUKAMI KOJI
Provided is a wind turbine blade that delivers the desired aerodynamic characteristics under conditions where the upper limit of the chord length near the blade root is limited. The wind turbine blade includes a blade body (3) whose chord length increases from a blade tip (1b) toward a blade root (1a). The blade body (3) includes a blade tip region (1c) located near the blade tip and whose chord length increases gradually toward the blade root (1a), the blade tip region (1c) having a substantially constant first design lift coefficient, a maximum-chord-length position (1d) located near the blade root (1a) and having a maximum chord length, the maximum-chord-length position (1d) having a second design lift coefficient higher than the first design lift coefficient, and a transition region (1e) located between the blade tip region (1c) and the maximum-chord-length position (1d). The transition region (1e) has a design lift coefficient increasing gradually from the first design lift coefficient to the second design lift coefficient in a direction from the blade tip (1b) toward the blade root (1a).
195 WIND TURBINE BLADE, WIND POWER GENERATION SYSTEM INCLUDING THE SAME, AND METHOD FOR DESIGNING WIND TURBINE BLADE EP11834441.5 2011-10-20 EP2631474B1 2016-12-21 FUKAMI, Koji
Provided is a wind turbine blade that delivers the desired aerodynamic characteristics under conditions where the upper limit of the chord length near the blade root is limited. The wind turbine blade includes a blade body (3) whose chord length increases from a blade tip (1b) toward a blade root (1a). The blade body (3) includes a blade tip region (1c) located near the blade tip and whose chord length increases gradually toward the blade root (1a), the blade tip region (1c) having a substantially constant first design lift coefficient, a maximum-chord-length position (1d) located near the blade root (1a) and having a maximum chord length, the maximum-chord-length position (1d) having a second design lift coefficient higher than the first design lift coefficient, and a transition region (1e) located between the blade tip region (1c) and the maximum-chord-length position (1d). The transition region (1e) has a design lift coefficient increasing gradually from the first design lift coefficient to the second design lift coefficient in a direction from the blade tip (1b) toward the blade root (1a).
196 KITE BASED PLATFORM US12689868 2010-01-19 US20110174932A1 2011-07-21 Alon TELLEM
A kite-based platform device includes a passive aerodynamically-shaped structure for using aerodynamic lift to lift an end of a tether. The device also includes a payload with a motorized climbing mechanism for attaching to the tether and raising and lowering the payload along the tether.
197 HYBRID DRIVE ENGINE US14059765 2013-10-22 US20150110614A1 2015-04-23 David C. Bosley
A hybrid drive engine uses air foil shaped disks of a first configuration for a compressor portion thereof and air foil shaped disks of a second configuration for a turbine portion thereof, whereby the disks exhibit aerodynamic effects of lift. Particularly, the compressor disks are configured to cause aerodynamic lift off of a periphery of the disks, while the turbine disks are configured to cause aerodynamic lift off of an inner hole of the disks. The aerodynamic nature of the disks cause each disk thereof to form two opposing airfoil shapes either head to head or trailing edge to trailing edge across the through hole.
198 NAVIRE MULTICOQUE À PROPULSION MARINE PCT/EP2015/050715 2015-01-15 WO2015107125A1 2015-07-23 HUETZ, Lionel; GUELFI, Gianluca; KERHUEL, Matthieu; THOMAS, Hubert

Ce navire (10), qui présente un rapport longueur sur largeur inférieur à deux, comporte une superstructure et au moins deux coques, la superstructure formant une aile propre à générer passivement une portance aérodynamique comprise entre 20 et 90 % du poids du navire à une vitesse de croisière de celui-ci, l'aile comportant des extrémités recourbées et connectées à chacune des coques et ayant une surface développée de l'extrados sensiblement égale au produit de la longueur par la largeur du navire. Il se caractérisé en ce qu'un point A, d'application de la portance aérodynamique générée par la superstructure (12), est situé en arrière du centre de gravité G, d'application des forces de gravité sur le navire, un point H, d'application de la résultante des efforts hydrodynamiques générés par les coques (50, 60), étant situé en avant du centre de gravité G.

199 Vertical windmill with omnidirectional diffusion US645968 1991-01-25 US5057696A 1991-10-15 Robert N. Thomas
A vertical windmill employing aerodynamic lift includes stators that form an omnidirectional diffuser and can rotate out of the wind to reduce the destructive tendencies in high winds. A braking mechanism included in the windmill uses rotation of the airfoils to reduce the lift caused by the wind and disengagement of the airfoils to reduce nearly all lift on the airfoils. Centrifugal force is used to activate the brake in high winds, both to slow the rotor speed and, in extreme winds, to stop the rotor. A motor is provided to drive the windmill to simplify controls and increase energy production.
200 SURFACE-PIERCING SURFACE EFFECT MARINE CRAFT EP95924920.0 1995-06-23 EP0765266A1 1997-04-02 ROCCOTELLI, Sabino
A marine or naval craft having a triple catamaran-type hull (3, 3, 4) from the bottom of which project three respective ventral fins (6, 6, 7) provided with propulsion and control means (14, 17, 18) and which support a load platform (5) having a wing-like longitudinal section suitable for producing aerodynamic lift at speed.