会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 信号处理 / 信号 / 处理信号

处理信号

阅读:1042发布:2020-07-11

IPRDB可以提供处理信号专利检索,专利查询,专利分析的服务。并且本发明涉及用于对信号进行处理的方法、设备和计算机程序产品。在所述设备的多个传感器处接收信号。确定信号状态的发起,在所述信号状态下,在所述多个传感器处接收到特定类型的信号。响应于对所述信号状态的发起的确定,从数据存储装置获取表明将由设备的波束形成器施加的波束形成器系数的数据,其中所表明的波束形成器系数被确定以便适于施加到在所述信号状态下在传感器处接收到的信号。由波束形成器对于在所述信号状态下在传感器处接收到的信号施加所表明的波束形成器系数,从而生成波束形成器输出。,下面是处理信号专利的具体信息内容。

1.一种在设备(102)处对信号进行处理的方法,所述方法包括:

在所述设备(102)的多个传感器(402)处接收信号;

确定回波信号状态的发起,在所述回波信号状态下,在所述多个传感器(402)处接收到包括回波信号的信号;

响应于对所述回波信号状态的发起的所述确定,从数据存储装置(214)获取表明将由设备的波束形成器(404)施加的波束形成器系数的数据,所述表明的波束形成器系数被确定以便适于施加到在所述回波信号状态下在传感器(402)处接收到的所述信号;以及由波束形成器(404)对于在所述回波信号状态下在传感器(402)处接收到的信号施加所表明的波束形成器系数,以便生成波束形成器输出。

2.权利要求1的方法,其中,在所述回波信号状态的发起之前,所述设备(102)操作在非回波信号状态下,在所述非回波信号状态下,波束形成器(404)施加适于在所述非回波信号状态下施加到在传感器(402)处接收到的信号的其他波束形成器系数,并且其中所述方法还包括:响应于对所述回波信号状态的发起的所述确定,将所述其他波束形成器系数存储在所述数据存储装置(214)中。

3.权利要求2的方法,其还包括:

确定所述非回波信号状态的发起;

响应于对所述非回波信号状态的发起的确定,从数据存储装置(214)获取表明所述其他波束形成器系数的数据;以及由波束形成器(404)对于在所述非回波信号状态下在传感器(402)处接收到的信号施加所述表明的其他波束形成器系数,从而生成所述波束形成器输出。

4.任一条在前权利要求的方法,其中,由波束形成器(404)施加所表明的波束形成器系数的步骤包括以下步骤的其中之一:(a)平滑地适配由波束形成器(404)施加的波束形成器系数,直到其与所表明的波束形成器系数匹配为止;以及(b)施行以下各项的加权和:(i)利用在对于回波信号状态的发起的所述确定之前由波束形成器(404)施加的早前波束形成器系数确定的早前波束形成器输出;以及(ii)利用所表明的波束形成器系数确定的新近波束形成器输出。

5.权利要求4的方法,其还包括:平滑地调节使用在所述加权和中的权重,从而使得所述加权和在早前波束形成器输出与新近波束形成器输出之间平滑地过渡。

6.权利要求1的方法,其中,以下各项的其中之一成立:

(a)表明波束形成器系数的数据是波束形成器系数;并且

(b)表明波束形成器系数的获取的数据包括在传感器(402)处接收到的信号的度量,其中所述度量通过使用预定函数与波束形成器系数相关。

7.权利要求1的方法,其中,所述信号是以下各项的其中之一:(i)音频信号;(ii)一般宽带信号;(iii)一般窄带信号;(iv)雷达信号;(v)声纳信号;(vi)天线信号;(vii)无线电波;或(viii)微波。

8.一种用于处理信号的设备(102),所述设备(102)包括:

波束形成器(404);

用于接收信号的多个传感器(402);

用于确定回波信号状态的发起的确定装置,在所述回波信号状态下,在所述多个传感器(402)处接收到包括回波信号的信号;以及响应于由确定装置对所述回波信号状态的发起的确定从数据存储装置(214)获取表明将由波束形成器(404)施加的波束形成器系数的数据的获取装置,所述表明的波束形成器系数被确定以便适于施加到在所述回波信号状态下在传感器(402)处接收到的信号,其中,波束形成器(404)被配置成对于在所述回波信号状态下在传感器(402)处接收到的信号施加所表明的波束形成器系数,从而生成波束形成器输出。

9.权利要求8的设备(102),其中,所述传感器是用于接收音频信号的麦克风(402),并且其中所述设备(102)还包括用于在通信事件中输出音频信号的音频输出装置(210),并且其中所述回波信号是在回波信号状态从音频输出装置(210)输出的回波音频信号,并且其中所述设备(102)还包括被配置成应用于波束形成器输出的回波抵消装置(406)。

说明书全文

处理信号

技术领域

[0001] 本发明涉及处理在设备处接收到的信号。

背景技术

[0002] 设备可以具有输入装置,其可以被用来从周围环境接收所发送的信号。举例来说,设备可以具有诸如麦克风之类的音频输入装置,其可以被用来从周围环境接收音频信号。举例来说,用户设备的麦克风可以接收主要音频信号(即来自用户的话音)以及其他音频信号。所述其他音频信号可以是在设备的麦克风处接收到的干扰(或“不合期望的”)音频信号,并且可以是接收自干扰源或者可以是四周背景噪声或麦克风的自身噪声。干扰音频信号可能会扰乱在设备处接收到的主要音频信号。设备可以把所接收到的音频信号用于许多不同目的。举例来说,如果所接收到的音频信号是接收自用户的话音信号,则可以由设备处理话音信号以便使用在通信事件中,这例如是通过把话音信号通过网络发送到另一个设备来实现的,所述另一个设备可以与所述通信事件的另一个用户相关联。替换地或附加地,所接收到的音频信号可以被用于本领域内已知的其他目的。
[0003] 在其他实例中,设备可以具有用于接收其他类型的所发送信号的接收装置,比如接收雷达信号、声纳信号、天线信号、无线电波、微波以及一般的宽带信号或窄带信号。对于这些其他类型的所发送信号可能会发生同样的情况,由此在接收装置处接收到主要信号以及干扰信号。下面的描述主要是关于在设备处接收到音频信号而提供的,但是相同的原理将适用于在设备处接收到其他类型的所发送信号,比如前面所描述的一般宽带信号、一般窄带信号、雷达信号、声纳信号、天线信号、无线电波和微波。
[0004] 为了改进所接收到的音频信号(例如接收自用户的用于呼叫中的话音信号)的质量,希望抑制在用户设备的麦克风处接收到的干扰音频信号(例如背景噪声和接收自干扰音频源的干扰音频信号)。
[0005] 对于立体麦克风和其他麦克风阵列的使用正变得更加常见,其中多个麦克风作为单个音频输入装置操作。通过在设备处使用多个麦克风,除了可以从由单个麦克风接收到的音频信号中提取出的信息之外还允许使用从所接收到的音频信号中提取出的空间信息。在使用这样的设备时,用于抑制干扰音频信号的一种方法是对于通过多个麦克风接收到的各个音频信号应用波束形成器。波束形成是通过应用信号处理对由麦克风阵列接收到的各个音频信号进行聚焦的处理,从而与在麦克风阵列处接收到的其余音频信号相比,可以增强在麦克风阵列处从一个或更多所期望的位置(即方向和距离)接收到的特定音频信号。为了简单起见,在这里我们将描述仅仅具有单个所期望的方向的情况,但是相同的方法也将适用于存在更多感兴趣方向的情况。可以在波束形成处理之前确定或设定在麦克风阵列处接收所期望的音频信号的角度(和/或距离),即所谓的到达方向(“DOA”)信息。可能有利的是把所期望的到达方向设定为固定,因为对于到达方向的估计可能比较复杂。但是在替换的情况中可能有利的是针对不断改变的条件适配所期望的到达方向,从而可能有利的是在使用波束形成器时对所期望的到达方向实时地施行估计。自适应波束形成器对所接收到的音频信号应用若干“波束形成器系数”。这些波束形成器系数可以被适配成考虑到DOA信息,以便处理由多个麦克风接收到的音频信号从而形成“波束”,由此对由麦克风从所期望的位置(即所期望的方向和距离)接收到的所期望的音频信号施加高增益,并且在去到任何其他(例如产生干扰或不合期望的)信号源的方向上施加低增益。波束形成器可以是“自适应”的意义在于,可以对干扰源的抑制进行适配,但是对于所期望的来源/视线方向的选择可能不一定是可适配的。
[0006] 如前所述,麦克风波束形成的一个目的是组合麦克风阵列的各个麦克风信号,从而相对于所期望的信号抑制不合期望的信号。在自适应波束形成中,在波束形成器中组合各个麦克风信号的方式是基于在麦克风阵列处接收到的信号,并且从而可以把波束形成器的干扰抑制能力集中于抑制输入信号中的实际不合期望的来源。
[0007] 除了具有用于接收音频信号的多个麦克风之外,设备还可以具有音频输出装置(其例如包括扬声器)以用于输出音频信号。这样的设备例如可用于其中例如在通信事件期间向/从设备的用户输出/接收音频信号的情况。举例来说,所述设备可以是诸如电话、计算机或电视之类的用户设备,并且可以包括允许用户从事远程电信会议所必要的装备。
[0008] 如果设备既包括音频输出装置(例如包括扬声器)又包括音频输入装置(例如麦克风),则在所接收到的音频信号中存在回波时常常会出现问题,其中回波是由于从扬声器输出并且在麦克风处接收到音频信号而导致的。从扬声器输出的音频信号包括回波以及扬声器所播放的其他声音,比如来自视频剪辑的音乐或音频。所述设备可以包括操作来抵消由麦克风接收到的音频信号中的回波的声学回波抵消器(AEC)。
[0009] 虽然AEC被用来从在麦克风处接收到的信号抵消扬声器回波,但是(如前所述的)波束形成器可以通过抑制回波抵消器输入中的回波水平来简化回波抵消器的任务。这样做的好处将是提高了回波抵消器透明度。举例来说,当在实施如前所述的波束形成器的设备处接收到的音频信号中存在回波时,可以把所述回波作为所接收到的音频信号中的干扰来对待,并且可以对波束形成器系数进行适配,从而使得波束形成器对从回波信号的方向(和/或距离)到达的音频信号施加低增益。

发明内容

[0010] 在自适应波束形成器中,可能非常合乎期望的一项属性是具有缓慢演变的波束图案。波束图案的快速改变往往会导致背景噪声特性的可听改变,并因此不会被感知为是自然的。因此,在响应于如前所述的通信事件中的远端活动而适配波束形成器系数时,将在快速抑制回波与不会过快改变波束图案之间取得折中。
[0011] 本发明的发明人认识到,在包括波束形成器和回波抵消器的设备中,在波束形成器的操作中存在利益冲突。具体而言,从一个角度来说希望按照缓慢的方式施行对于波束形成器系数的适配,从而提供不会令用户感到烦扰的平滑波束形成器行为。但是从另一个角度来说,对于波束形成器系数的缓慢适配可能会在波束形成器开始接收回波信号的时间与波束形成器系数被适当地适配成抑制回波信号的时间之间引入延迟。这样的延迟可能是有害的,因为希望尽可能快速地抑制扬声器回波。因此可能有用的是控制适配波束形成器系数的方式。
[0012] 根据本发明的第一方面,提供一种在设备处对信号进行处理的方法,所述方法包括:在所述设备的多个传感器处接收信号;确定信号状态的发起,在所述信号状态下,在所述多个传感器处接收到特定类型的信号;响应于对所述信号状态的发起的所述确定,从数据存储装置获取表明将由设备的波束形成器施加的波束形成器系数的数据,所述表明的波束形成器系数被确定以便适于施加到在所述信号状态下在传感器处接收到的信号;以及由波束形成器对于在所述信号状态下在传感器处接收到的信号施加所表明的波束形成器系数,从而生成波束形成器输出。
[0013] 通过从数据存储装置获取表明波束形成器系数的数据允许将波束形成器快速适配于信号状态。这样,在优选实施例中可以快速地抑制扬声器回波。举例来说,当信号是音频信号并且信号状态是其中在传感器(例如麦克风)处接收到从设备的音频输出装置输出的回波音频信号的回波状态时,自适应波束形成器的波束形成性能可以得到改进,这是在于例如在其中频繁发生扬声器回波的远程电信会议设置中可以快速实现最优的波束形成器行为。其结果是,在这些实例中,回波抵消器的透明度可以得到提高,这是因为麦克风信号中的扬声器回波被更加快速地减小。
[0014] 在所述信号状态的发起之前,所述设备可能操作在其他信号状态下,在所述其他信号状态下,波束形成器施加适于在所述其他信号状态下施加到在传感器处接收到的信号的其他波束形成器系数,并且所述方法还可以包括:响应于对所述信号状态的发起的所述确定,将所述其他波束形成器系数存储在所述数据存储装置中。
[0015] 所述方法还可以包括:确定所述其他信号状态的发起;响应于对所述其他信号状态的发起的确定,从数据存储装置获取表明所述其他波束形成器系数的数据;以及由波束形成器对于在所述其他信号状态下在传感器处接收到的信号施加所述表明的其他波束形成器系数,从而生成波束形成器输出。所述方法还可以包括:响应于对所述其他信号状态的发起的所述确定,在所述数据存储装置中存储表明在所述其他信号状态的发起之前由波束形成器施加的波束形成器系数的数据。
[0016] 在优选实施例中,所述传感器是用于接收音频信号的麦克风,并且所述设备包括用于在通信事件中输出音频信号的音频输出装置,并且所述特定类型的信号是从音频输出装置输出的回波音频信号,并且所述信号状态是回波状态。所述其他信号状态可以是非回波状态,其中在麦克风处没有接收到显著的回波音频信号。
[0017] 可以在发起信号状态之前施行确定信号状态的发起的步骤。确定回波状态的发起的步骤可以包括确定通信事件中的音频输出装置的输出活动。所述方法还可以包括:响应于获取所述波束形成器系数,对波束形成器进行适配从而在所述信号状态的发起之前对于在传感器处接收到的信号施加所获取的波束形成器系数。
[0018] 确定信号状态的发起的步骤可以包括:确定在传感器处接收到特定类型的信号。
[0019] 由波束形成器施加所表明的波束形成器系数的步骤可以包括:平滑地适配由波束形成器施加的波束形成器系数,直到其与所表明的波束形成器系数匹配为止。
[0020] 由波束形成器施加所表明的波束形成器系数的步骤可以包括施行以下各项的加权和:(i)利用在对于信号状态的发起的所述确定之前由波束形成器施加的早前波束形成器系数确定的早前波束形成器输出;以及(ii)利用所表明的波束形成器系数确定的新近波束形成器输出。所述方法还可以包括:平滑地调节使用在所述加权和中的权重,从而使得所述加权和在早前波束形成器输出与新近波束形成器输出之间平滑地过渡。
[0021] 所述方法还可以包括:基于在传感器处接收到的信号适配波束形成器系数,从而使得波束形成器对于在传感器处接收到的不合期望的信号施加抑制。
[0022] 表明波束形成器系数的数据可以是波束形成器系数。
[0023] 表明波束形成器系数的数据可以包括在传感器处接收到的信号的度量,其中所述度量通过使用预定函数与波束形成器系数相关。所述方法还可以包括:利用所获取的度量和所述预定函数计算波束形成器系数。所述方法还可以包括:平滑地适配所述度量,从而平滑地适配由波束形成器施加的波束形成器系数。
[0024] 所述方法还可以包括:利用波束形成器输出来表示在多个传感器处接收到的信号以供在设备内进一步处理。
[0025] 波束形成器输出可以被设备使用在通信事件中。所述方法还可以包括:对波束形成器输出应用回波抵消装置。
[0026] 所述信号可以是以下各项的其中之一:(i)音频信号、(ii)一般宽带信号、(iii)一般窄带信号、(iv)雷达信号、(v)声纳信号、(vi)天线信号、(vii)无线电波以及(viii)微波。
[0027] 根据本发明的第二方面,提供一种用于处理信号的设备,所述设备包括:波束形成器;用于接收信号的多个传感器;用于确定信号状态的发起的确定装置,在所述信号状态下,在所述多个传感器处接收到特定类型的信号;以及响应于由确定装置确定所述信号状态的发起从数据存储装置获取表明将由波束形成器施加的波束形成器系数的数据的获取装置,所述表明的波束形成器系数被确定以便适于施加到在所述信号状态下在传感器处接收到的信号,其中波束形成器被配置成对于在所述信号状态下在传感器处接收到的信号施加所表明的波束形成器系数,从而生成波束形成器输出。
[0028] 所述设备还可以包括数据存储装置。在优选实施例中,传感器是用于接收音频信号的麦克风,并且所述设备还包括用于在通信事件中输出音频信号的音频输出装置,并且所述特定类型的信号是从音频输出装置输出的回波音频信号,并且所述信号状态是回波状态。
[0029] 所述设备还可以包括被配置成应用于波束形成器输出的回波抵消装置。
[0030] 根据本发明的第三方面,提供一种用于在设备处对信号进行处理的计算机程序产品,所述计算机程序产品被具体实现在非瞬时性计算机可读介质上,并且被配置成当在所述设备的处理器上执行时施行这里所描述的任何方法。

附图说明

[0031] 为了更好地理解本发明并且说明如何能够将本发明付诸实施,下面将通过举例的方式参照附图,其中:
[0032] 图1示出了根据一个优选实施例的通信系统;
[0033] 图2示出了根据一个优选实施例的设备的示意图;
[0034] 图3示出了根据一个优选实施例的设备操作于其中的环境;
[0035] 图4示出了根据一个优选实施例的设备的各个元件的功能方框图;
[0036] 图5示出了根据一个优选实施例的处理信号的处理的流程图;
[0037] 图6a是表示第一种情形下的波束形成器的操作的时序图;以及
[0038] 图6b是表示第二种情形下的波束形成器的操作的时序图。

具体实施方式

[0039] 下面将仅仅通过举例的方式描述本发明的优选实施例。在优选实施例中,确定信号状态将被发起或者最近已被发起,在所述信号状态下,设备接收特定类型的信号。从存储器获取表明被适配成适用于(所述信号状态)的所述特定类型的信号的波束形成器系数的数据,并且对设备的波束形成器进行适配,从而对于在所述信号状态下接收到的信号施加所表明的波束形成器系数。通过获取表明波束形成器系数的数据,可以快速地适配波束形成器的行为,以便适合在所述信号状态下在设备处接收到的特定类型的信号。举例来说,所述特定类型的信号可以是回波信号,其中可以获取波束形成器系数从而在通信事件中快速抑制回波信号。
[0040] 首先参照图1,该图示出了根据一个优选实施例的通信系统100。通信系统100包括与第一用户104相关联的第一设备102。第一设备102连接到通信系统100的网络106。通信系统100还包括与第二用户110相关联的第二设备108。设备108也连接到网络106。
为了清楚起见在图1中只示出了两个设备(102和108),但是应当认识到,可以把多于两个设备按照与图1中对应于设备102和108所示出的类似方式连接到通信系统100的网络
106。通信系统100的各个设备(例如设备102和108)可以通过通信系统100中的网络106彼此通信,从而允许用户104和110从事通信事件从而彼此通信。网络106例如可以是因特网。设备102和108中的每一个例如可以是移动电话、个人数字助理(“PDA”)、个人计算机TM TM TM
(“PC”)(其中例如包括Windows 、Mac OS 和Linux PC)、膝上型计算机、电视、游戏设备或者能够连接到网络106的其他嵌入式设备。设备102和108被设置成从对应的用户104和110接收信息以及向其输出信息。
[0041] 现在参照图2,该图示出了设备102的示意图。设备102可以是固定或移动设备。设备102包括CPU 204,其连接到用于接收音频信号的麦克风阵列206、用于输出音频信号的音频输出装置210、例如用于向设备102的用户104输出视觉数据的屏幕的显示器212以及用于存储数据的存储器214。
[0042] 现在参照图3,该图示出了设备102操作于其中的示例性环境300。
[0043] 设备102的麦克风阵列206接收来自环境300的音频信号。举例来说,如图3中所示,麦克风阵列206接收来自用户104(如图3中的d1所示)的音频信号、来自TV 304(如图3中的d2所示)的音频信号、来自风扇306(如图3中的d3所示)的音频信号以及来自扬声器310((如图3中的d4所示))的音频信号。设备102的音频输出装置210包括音频输出处理装置308和扬声器310。音频输出处理装置308进行操作来向扬声器310发送音频输出信号以便从扬声器310输出。扬声器310可以被实施在设备102的外罩内。可替换地,扬声器310可以被实施在设备102的外罩之外。音频输出处理装置308可以操作为执行在CPU 204上的软件或者作为设备102中的硬件。本领域技术人员将认识到,麦克风阵列206可以接收除了图3中示出的之外的其他音频信号。在图3所示的情形中,来自用户104的音频信号是所期望的音频信号,并且在麦克风阵列206处接收到的所有其他音频信号都是干扰音频信号。在其他实施例中,在麦克风阵列206处接收到的多于一个音频信号可以被视为“所期望的”音频信号,但是为了简单起见,在这里所描述的实施例中只有一个所期望的音频信号(即来自用户104的音频信号),并且其他音频信号被视为干扰。多余的噪声信号的其他来源可以例如包括空调系统、正在播放音乐的设备、环境中的其他用户以及音频信号的回响(例如来自环境300中的墙壁)。
[0044] 现在参照图4,该图示出了根据本发明的一个优选实施例的设备102的各个元件的功能表示。麦克风阵列206包括多个麦克风4021、4022和4023。设备102还包括波束形成器404,其例如可以是最小方差无失真响应(MVDR)波束形成器。设备102还包括声学回波抵消器(AEC)406。波束形成器404和AEC 406可以用执行在CPU 204上的软件来实施,或者用设备102中的硬件来实施。麦克风阵列206中的每一个麦克风402的输出耦合到波束形成器404的对应输入。本领域技术人员将认识到,需要多个输入来实施波束形成。波束形成器404的输出耦合到AEC 406的输入。麦克风阵列206在图4中被显示为具有三个麦克风(4021、4022和4023),但是应当理解的是,麦克风的这一数目仅仅是一个例子而不是以任何方式进行限制。
[0045] 波束形成器404包括用于接收及处理来自麦克风阵列206的麦克风4021、4022和4023的音频信号y1(t)、y2(t)和y3(t)的装置。举例来说,波束形成器404可以包括语音活动检测器(VAD)和DOA估计块(图中未示出)。在操作中,波束形成器404查明由麦克风阵列
206接收到的音频信号的性质,并且根据对于由VAD和DOA估计块检测到的话音类特性的检测,确定(多个)主要说话者的一个或更多主方向。在其他实施例中,(多个)主要说话者的(多个)主方向可以是预先设定的,从而使得波束形成器404聚焦于固定方向。在图3所示出的例子中,接收自用户104的音频信号(d1)的方向被确定为主方向。波束形成器404可以使用DOA信息(或者可以简单地使用被预先设定为由波束形成器404使用的固定视线方向)来处理所述音频信号,这是通过形成在来自由麦克风阵列206从中接收到所想要的信号的主方向(d1)的方向上具有高增益并且在去到任何其他信号的方向(例如d2、d3和d4)上具有低增益的波束而实现的。
[0046] 波束形成器404还可以确定干扰到达方向(d2、d3和d4),并且可以有利地适配波束形成器404的行为,从而对于从这些干扰到达方向接收到的音频信号施加特别低的增益,以便抑制干扰音频信号。虽然前面描述了波束形成器404可以确定任意数目的主方向,但是所确定的主方向的数目会影响波束形成器404的属性,例如对于较大数目的主方向,与仅仅确定单个主方向的情况相比,波束形成器404对于在麦克风阵列206处从其他(多余)方向接收到的信号所施加的衰减可能较小。可替换地,即使当存在多个主方向时,波束形成器404也可以对特定不合期望的信号施加相同的抑制:这取决于波束形成器404的具体实现方式。对于其中不合期望的来源的数目、功率和位置有所不同的不同情形来说,波束形成器404的最优波束形成行为是不同的。当波束形成器404的自由度有限时,在(i)对于一个信号的抑制多于其他信号或者(ii)对于所有信号的抑制数量相同之间做出选择。这方面有许多变型,并且被选择施加到信号的实际抑制取决于波束形成器404当前所体验的情形。可以通过将要处理的单个通道的形式提供波束形成器404的输出。还有可能的是输出多于一个通道,以便例如保留或者虚拟地生成立体图像。波束形成器404的输出被传递到AEC 406,其抵消波束形成器输出中的回波。利用AEC 406抵消信号中的回波的技术是本领域内已知的,并且在这里没有详细描述这样的技术的细节。本领域技术人员将认识到,在设备102中可以按照许多不同方式使用AEC 406的输出。举例来说,波束形成器404的输出可以被用作用户104正利用设备102参与其中的通信事件的一部分。
[0047] 通信系统100中的其他设备108可以具有与前面关于设备102所描述的相应元件。
[0048] 当自适应波束形成器404运转良好时,其按照缓慢的方式基于在各个麦克风402处接收到的信号对其行为(即波束形成器系数)进行估计,以便具有不会针对不合期望的来源的突然出现而快速调节的平滑波束形成行为。对于按照缓慢的方式适配波束形成器404的波束形成器系数存在两个主要原因。首先,不希望具有快速改变的波束形成器行为是因为这样可能会令用户104感到非常烦扰。其次,从波束形成的角度来说,抑制在大多数时间突出的不合期望的来源是合理的:也就是说,与始终存在的不合期望的信号相比,对于仅仅持续较短时间的不合期望的信号的抑制通常没有那么重要。但是如前所述,希望尽可能快速地抑制扬声器回波。
[0049] 在这里所描述的方法中,针对(i)当不存在回波时和(ii)当存在回波时的两种情形,把波束形成器状态(例如决定由波束形成器404在组合麦克风信号y1(t)、y2(t)和y3(t)时所实施的波束形成效果的波束形成器系数)存储在存储器214中。一旦检测到扬声器活动,例如一旦在通信事件中接收到信号以供从扬声器310输出时,则可以把波束形成器404设定到预先存储的波束形成器状态以便在回波活动期间进行波束形成。可以由在设备102中使用来通过通信系统100从事通信事件的远程电信会议设置(其包括波束形成器404)检测扬声器活动。与此同时,将波束形成器状态(即在检测到回波状态之前由波束形成器404使用的波束形成器系数)保存在存储器214中以作为对应于无回波活动的波束形成状态。当回波不再存在时,波束形成器404被设定到用于在无回波活动期间进行波束形成的预先存储的波束形成器状态(利用先前存储在存储器214中的波束形成器系数),并且与此同时将波束形成器状态(即在回波状态结束之前由波束形成器404使用的波束形成器系数)保存为对应于回波活动的波束形成状态。在一段有限的时间内平滑地进行波束形成器状态之间的过渡(即对于波束形成器404所施加的波束形成器系数的适配)而不是瞬时过渡,从而减少由于所述过渡而使得用户104感到的烦扰。
[0050] 下面将参照图5描述根据一个优选实施例的处理数据的方法。用户104与用户110从事通信事件(比如音频或视频呼叫),其中在所述通信事件中在设备102与108之间发送数据。当在通信事件中没有在设备102处接收到来自设备108的音频数据时,设备102操作在无回波状态,其中没有从扬声器310输出也没有在麦克风阵列206处接收到回波信号。
[0051] 在步骤S502中,在无回波状态下在麦克风阵列206的麦克风4021、4022和4023处接收到音频信号。所述音频信号例如可以是接收自用户104、TV 304和/或风扇306。
[0052] 在步骤S504中,在麦克风4021、4022和4023处接收到的音频信号被传递到波束形成器404(以作为图4中所示的信号y1(t)、y2(t)和y3(t)),并且波束形成器404对音频信号y1(t)、y2(t)和y3(t)施加对应于无回波状态的波束形成器系数,从而生成波束形成器输出。如前所述,波束形成处理(根据波束形成器系数)组合所接收到的音频信号y1(t)、y2(t)和y3(t),从而使得可以相对于接收自另一个位置的音频信号增强接收自一个位置(即方向和距离)的音频信号。举例来说,在无回波状态下,麦克风4021、4022和4023可能正在接收来自用户104(来自方向d1)的所期望的音频信号以供用在通信事件中,并且还可能正在接收来自风扇306(来自方向d3)的不合期望的音频信号。可以对波束形成器404所施加的波束形成器系数进行适配,从而使得相对于接收自方向d3(来自风扇306)的音频信号增强接收自方向d1(来自用户104)的音频信号。这可以通过对接收自方向d3(来自风扇306)的音频信号施加抑制来实现。
[0053] 可以如图4中所示把波束形成器输出传递到AEC 406。但是在无回波状态下,AEC406可能不对波束形成器输出施行任何回波抵消。可替换地在无回波状态下,波束形成器输出可以绕过AEC 406。
[0054] 在步骤S506中,确定回波状态已被发起还是很快将被发起。举例来说,如果从扬声器310输出的通信事件的音频信号(例如在通信事件中接收自设备108的音频信号)被麦克风阵列206的麦克风4021、4022和4023接收到,则可以确定回波状态已被发起。可替换地,可以在通信事件中在设备102处通过网络106从设备108接收音频信号以便从设备102处的扬声器310输出。设备102处的应对通信事件的应用(其执行在CPU 204上)可以在从设备108接收到音频数据时检测到将要发生的扬声器活动,并且可以向波束形成器404表明将要从扬声器310输出通信事件的音频信号。这样就可以在回波状态实际被发起之前确定回波状态的发起,也就是说在扬声器310输出在通信事件中接收自设备108的音频信号之前确定。举例来说,在播出声卡中可以存在缓冲器,在从扬声器310输出之前可以把音频样本置于其中。在可以播出音频信号之前将需要遍历所述缓冲器,并且该缓冲器中的延迟将允许我们在扬声器310中播放相应的音频信号之前检测到扬声器活动。
[0055] 如果在步骤S506中没有确定回波状态的发起,则所述方法转回到步骤S502。步骤S502、S504和S506在无回波状态下重复,从而接收音频信号并且由波束形成器对所接收到的音频信号施加对应于无回波状态的波束形成器系数,直到在步骤S506确定回波状态的发起为止。波束形成器404还按照自适应方式根据所接收到的信号实时地更新波束形成器系数。这样,波束形成器系数就被适配成适合所接收到的信号。
[0056] 如果在步骤S506中确定了回波状态的发起,则所述方法转到步骤S508。在步骤S508中,把波束形成器404在无回波状态下施加的当前波束形成器系数存储在存储器214中。这样就允许在随后再次发起无回波状态时接着获取波束形成器系数(参见下面的步骤S522)。
[0057] 在步骤S510中,从存储器214获取对应于回波状态的波束形成器系数。所获取的波束形成器系数适用于回波状态下。举例来说,所获取的波束形成器系数可以是由波束形成器404在先前的回波状态期间施加的波束形成器系数(其可以被存储在存储器214中,正如下面关于步骤S520所描述的那样)。
[0058] 在步骤S512中,对波束形成器404进行适配,从而使其对信号y1(t)、y2(t)和y3(t)施加所获取的对应于回波状态的波束形成器系数。可以在一段时间内(例如在0.5到1秒的范围内)平滑地改变由波束形成器404施加的波束形成器系数,从而避免对于波束形成器404的波束图案的突然改变。作为针对改变波束形成器系数的一种替换方案,存在不发生改变的两个波束形成器系数集合,所述两个集合是(i)早前波束形成器系数(即恰好在确定回波状态的发起之前用在无回波状态下的那些波束形成器系数)和(ii)新近波束形成器系数(即从存储器214获取的对应于回波状态的那些波束形成器系数),并且同时利用新近和早前波束形成器系数计算对应的波束形成器输出。波束形成器404在使用早前波束形成器输出(即利用早前波束形成器系数计算的波束形成器输出)与新近波束形成器输出(即利用新近波束形成器系数计算的波束形成器输出)之间平滑地过渡。
[0059] 可以通过对于早前和新近波束形成器输出施加对应的权重以便形成被用于波束形成器404的输出的组合波束形成器输出来进行平滑过渡。对所述权重进行缓慢地调节,以便实现从使用早前波束形成器系数的波束形成器输出到使用新近波束形成器系数的输出的逐渐过渡。
[0060] 这方面可以利用下面的等式来表示:
[0061]
[0062] 其中, 和 是早前和新近波束形成器系数,其分别具有应用于麦克风信号m(xm(t-k))的系数索引k,并且g(t)是随着时间从1缓慢调节到0的权重。yold(t)和ynew(t)是使用早前和新近波束形成器系数的波束形成器输出。y(t)是波束形成器404的最终波束形成器输出。在这里可以看到,针对调节波束形成器系数本身的一种替换方案是实施从使用早前波束形成器系数获得的输出到使用新近波束形成器系数获得的输出的逐渐过渡。这种做法具有与逐渐改变波束形成器系数相同的优点,即来自波束形成器404的波束形成器输出不会发生突然改变,并因此不会烦扰到用户104。为了简单起见,前面给出的等式描述了其中波束形成器404具有单一波束形成器输出的例子,但是所述等式可以被推广到涵盖具有立体输出的波束形成器。
[0063] 如前所述,可以使用与时间有关的加权(g(t))来对早前和新近波束形成器系数进行加权,从而把早前输出的权重从1逐渐减小到0,并且把新近输出的权重从0逐渐增大到1,直到新近输出的权重为1并且早前输出的权重为0。
[0064] 波束形成器404的波束图案的突然改变可能令用户104(或用户110)感到烦扰。
[0065] 由波束形成器404在回波状态下施加的波束形成器系数被确定成使得波束形成器404对于在麦克风阵列206的麦克风4021、4022和4023处从扬声器310(来自方向d4)接收到的信号施加抑制。这样,波束形成器404就可以抑制通信事件中的回波信号。波束形成器404还可以按照类似的方式抑制在通信事件中在麦克风阵列206处接收到的其他扰乱信号。
[0066] 由于波束形成器404是自适应波束形成器404,因此其将继续监测在回波状态期间接收到的信号,并且在必要时适配在回波状态下使用的波束形成器系数,从而使其最优地适合于在麦克风阵列206的麦克风4021、4022和4023处接收到的信号。
[0067] 所述方法利用操作在回波状态下的设备102继续到步骤S514。在步骤S514中,在回波状态下在麦克风阵列206的麦克风4021、4022和4023处接收音频信号。所述音频信号例如可以是接收自用户104、扬声器310、TV 304和/或风扇306。
[0068] 在步骤S516中,在麦克风4021、4022和4023处接收到的音频信号被传递到波束形成器404(以作为如图4中所示的信号y1(t)、y2(t)和y3(t)),并且波束形成器404对音频信号y1(t)、y2(t)和y3(t)施加对应于回波状态的波束形成器系数,从而生成波束形成器输出。如前所述,波束形成处理组合所接收到的音频信号y1(t)、y2(t)和y3(t)(根据波束形成器系数),从而可以相对于接收自另一个位置的音频信号增强接收自一个位置(即方向和距离)的音频信号。举例来说,在回波状态下,麦克风4021、4022和4023可能正在接收来自用户104(来自方向d1)的所期望的音频信号以供用在通信事件中,并且还可能正在接收来自扬声器310(来自方向d4)的不合期望的干扰回波音频信号。可以对波束形成器404所施加的波束形成器系数进行适配,从而使得相对于接收自方向d4(来自扬声器310)的回波音频信号增强接收自方向d1(来自用户104)的音频信号。这可以通过对接收自方向d4(来自扬声器310)的回波音频信号施加抑制来实现。
[0069] 可以如图4中所示将波束形成器输出传递到AEC 406。在回波状态下,AEC 406对波束形成器输出施行回波抵消。通过在使用AEC 406之前使用波束形成器404来抑制一些回波,允许由AEC 406施行更加高效的回波抵消,从而使得AEC 406施行的回波抵消更加透明。与所接收到的音频信号中的回波水平相对于近端(所期望的)信号较高时相比,当所接收到的音频信号中的回波水平较低时,回波抵消器406(其包括回波抑制器)需要施加更少的回波抑制。这是因为由AEC 406施加的回波抑制的数量是根据近端信号掩蔽回波信号的多少而设定的。对应于较低的回波水平所述掩蔽效应较大,并且如果回波被完全掩蔽,则不需要由AEC 406施加回波抑制。
[0070] 在步骤S518中,确实是否已发起无回波状态。举例来说,如果在某一段预定时间内(例如在1到2秒的范围内)没有从设备108接收到通信事件的音频信号,或者如果在某一段预定时间内(例如在1到2秒的范围内)还没有从扬声器310输出并且由麦克风阵列206的麦克风4021、4022和4023接收到通信事件的音频信号,则可以确定已发起无回波状态。
[0071] 如果在步骤S518中没有确定无回波状态的发起,则所述方法转回步骤S514。步骤S514、S516和S518在回波状态下重复,从而接收音频信号并且由波束形成器404对所接收到的音频信号施加对应于回波状态的波束形成器系数(从而抑制所接收到的信号中的回波),直到在步骤S518中确定无回波状态的发起为止。波束形成器404还按照自适应方式根据所接收到的信号实时地更新波束形成器系数。这样,波束形成器系数就被适配成适合所接收到的信号。
[0072] 如果在步骤S518中确定了无回波状态的发起,则所述方法转到步骤S520。在步骤S520中,把波束形成器404在回波状态下施加的当前波束形成器系数存储在存储器214中。这样就允许在随后再次发起回波状态时接着获取波束形成器系数(参见步骤S510)。
[0073] 在步骤S522中,从存储器214获取对应于无回波状态的波束形成器系数。所获取的波束形成器系数适用于无回波状态下。举例来说,所获取的波束形成器系数可以是由波束形成器404在先前的无回波状态期间施加的波束形成器系数(其在步骤S508中被存储在存储器214中,正如前面所描述的那样)。
[0074] 在步骤S524中,对波束形成器404进行适配,从而使其对信号y1(t)、y2(t)和y3(t)施加所获取的对应于无回波状态的波束形成器系数。可以在一段时间内(例如在0.5到1秒的范围内)平滑地改变由波束形成器404施加的波束形成器系数,从而避免对于波束形成器404的波束图案的突然改变。对于波束形成器404的波束图案的突然改变可能会对用户104(或用户110)造成扰乱。作为针对改变波束形成器系数的一种替换方案,如前所述,可以通过平滑地调节使用在早前和新近波束形成器输出的加权和中的加权而在早前波束形成器输出(其对应于回波状态)与新近波束形成器输出(其对应于无回波状态)之间平滑地过渡波束形成器输出。
[0075] 在无回波状态下由波束形成器404施加的波束形成器系数被确定成使得波束形成器404对于在麦克风阵列206的麦克风4021、4022和4023处接收到的干扰信号(其例如来自TV 304或风扇306)施加抑制。
[0076] 可替换地,取代获取对应于无回波状态的波束形成器系数,所述方法可以绕过步骤S522和S524。这样就不从存储器214获取对应于无回波状态的波束形成器系数,并且相反地将简单地将波束形成器系数适配于所接收到的信号y1(t)、y2(t)和y3(t)。重要的是当如前所述地发起回波状态时快速地适配于回波的存在,这正是获取对应于回波状态的波束形成器系数的做法特别有利的原因。虽然仍然是有益的,但是与快速适配于回波状态相比,快速适配于无回波状态没有那么重要,这正是一些实施例可以如本段中所述地绕过步骤S522和S524的原因。
[0077] 由于波束形成器404是自适应波束形成器404,因此其将继续监测在无回波状态期间接收到的信号,并且在必要时对使用在无回波状态下的波束形成器系数进行适配,从而使其最优地适合于在麦克风阵列206的麦克风4021、4022和4023处接收到的信号(这例如是随着来自TV 304或风扇306的干扰信号改变进行的)。所述方法随后在设备102操作于无回波状态的情况下继续到步骤S502。
[0078] 因此,前面关于图5描述了一种操作设备102的方法,由此可以从存储器214获取对应于不同信号状态(例如回波状态和无回波状态)的波束形成器系数,并且在发起对应的信号状态时由波束形成器404施加。这样就允许快速地适配波束形成器404以便适合在不同信号状态下在麦克风阵列206处接收到的特定类型的信号。
[0079] 作为一个例子,假设总是存在不合期望的噪声信号N(t)并且不合期望的回波信号S(t)的发生并不频繁,则对应于存在回波时的波束形成器状态(即波束形成器404的波束形成器系数)将被适配成抑制在麦克风阵列206的麦克风4021、4022和4023处接收到的信号中的N(t)与S(t)的组合。与此相对,对应于不存在回波时的波束形成器状态(即波束形成器404的波束形成器系数)将被适配成仅仅抑制噪声信号N(t)。
[0080] 在实际的远程电信会议应用中,从所述应用发现将从扬声器310输出的信号中的活动直到所得到的回波到达麦克风阵列206的延迟可能相当长,其例如可能大于100毫秒。本发明的实施例有利地允许波束形成器404(按照缓慢的方式)改变其行为,这是通过在麦克风阵列206的麦克风4021、4022和4023处实际接收到回波信号之前将其波束形成器系数适配成适合于抑制回波而实现的。这样就允许波束形成器404在回波状态下的回波信号开始到达麦克风阵列206之前适配到良好的回波抑制波束形成器状态。
[0081] 图6a是表示第一种情形下的波束形成器404的操作的时序图。设备102正通过网络106与设备108从事通信事件(例如音频或视频呼叫)。在从扬声器310输出通信事件的任何音频信号之前,波束形成器404最初操作在无回波模式下。在时间602处,设备102处的应对通信事件的应用检测到来自设备108的传入音频数据,其将在通信事件中从扬声器310输出。换句话说,所述应用检测到回波状态的发起。直到时间604才开始由麦克风阵列206的麦克风4021、4022和4023接收在通信事件中接收自设备108并且从扬声器310输出的音频信号。如前所述,响应于在时间602处检测到回波状态的发起,在时间606期间,从存储器214获取对应于回波状态的波束形成器系数,并且波束形成器404被适配成到时间608时施加所获取的波束形成器系数。因此,到时间608时,波束形成器404正在施加适于抑制所接收到的信号y1(t)、y2(t)和y3(t)中的回波的波束形成器系数(其具有适当的波束形成效果)。因此,波束形成器404在时间608处被适配到回波状态,其是先于在时间604处发生的在麦克风阵列206的麦克风4021、4022和4023处开始接收回波信号。
[0082] 这与其中基于所接收到的信号来适配波束形成器系数的现有技术不同。这种情况在图6a中由持续时间610示出。在该例中,波束形成器状态不适合于回波状态直到时间612为止。也就是说,在时间610期间,基于所接收到的音频信号(其包括回波)对波束形成器进行适配,从而使得在时间612处波束形成器被适当地适配到回波状态。可以看到,与前面关于图5描述的方法相比,这里描述的现有技术的方法导致其间改变波束形成器系数的时间段更长(即时间段610长于时间段606)。这是因为在图5所示的方法中,波束形成器系数是从存储器214获取的,因此令波束形成器快速适配到那些所获取的波束形成器系数,而在现有技术中则必须基于所接收到的音频信号来确定波束形成器系数。此外,在现有技术中,波束形成器不开始适配到回波状态直到在时间604处在各个麦克风处接收到回波信号为止,而在前面关于图5描述的方法中,当在时间602处检测到扬声器活动时,波束形成器404就可以开始适配到回波状态。因此,在现有技术中,波束形成器不完全适合于回波直到时间612为止,这迟于优选实施例的波束形成器404适合于回波的时间608。
[0083] 图6b是表示第二种情形下的波束形成器404的操作的时序图。在第二种情形下,在波束形成器系数完全适配到回波状态之前,在麦克风阵列206的麦克风4021、4022和4023处接收到回波。设备102正通过网络106与设备108从事通信事件(例如音频或视频呼叫)。在从扬声器310输出通信事件的任何音频信号之前,波束形成器404最初操作在无回波模式下。在时间622处,设备102处的应对通信事件的应用检测到来自设备108的传入音频数据,其将在通信事件中从扬声器310输出。换句话说,所述应用检测到回波状态的发起。
直到时间624才开始由麦克风阵列206的麦克风4021、4022和4023接收在通信事件中接收自设备108并且从扬声器310输出的音频信号。如前所述,响应于在时间622处检测到回波状态的发起,在时间626期间,从存储器214获取对应于回波状态的波束形成器系数,并且波束形成器404被适配成到时间628时施加所获取的波束形成器系数。因此,到时间628时,波束形成器404正在施加适于抑制所接收到的信号y1(t)、y2(t)和y3(t)中的回波的波束形成器系数。因此,波束形成器404在时间628处被适配成针对回波状态,其是紧接在时间624处发生的在麦克风阵列206的麦克风4021、4022和4023处开始接收回波信号之后。
[0084] 这与其中基于所接收到的信号来适配波束形成器系数的现有技术不同。这种情况在图6b中由持续时间630示出。在该例中,波束形成器状态不适合于回波状态直到时间632为止。也就是说,在时间630期间,基于所接收到的音频信号(其包括回波)对波束形成器进行适配,从而使得在时间632处波束形成器被适当地适配到回波状态。可以看到,与前面关于图5描述的方法相比,这里描述的现有技术的方法导致其间改变波束形成器系数的时间段更长(即时间段630长于时间段626)。这是因为在图5所示的方法中,波束形成器系数是从存储器214获取的,因此令波束形成器快速适配到那些所获取的波束形成器系数,而在现有技术中则必须基于所接收到的音频信号来确定波束形成器系数。此外,在现有技术中,波束形成器不开始适配到回波状态直到在时间624处在各个麦克风处接收到回波信号为止,而在前面关于图5描述的方法中,当在时间622处检测到扬声器活动时,波束形成器404就可以开始适配到回波状态。因此,在现有技术中,波束形成器不适合于回波直到时间632为止,这迟于优选实施例的波束形成器404适合于回波的时间628。
[0085] 提供图6a和6b的时序图是出于说明性目的,并且不必需是按比例绘制的。
[0086] 如前所述,波束形成器404可以用在CPU 204上执行的软件来实施,或者用设备102中的硬件来实施。当用软件实施波束形成器404时,可以通过具体实现在非瞬时性计算机可读介质上的计算机程序产品来提供,其被配置成使得在设备102的CPU 204上执行时施行如前所述的波束形成器404的功能。图5中所示出的方法步骤可以被实施为设备102中的硬件或软件中的模块。
[0087] 虽然前面描述的实施例提到了由麦克风阵列206从单个用户104接收一个所期望的音频信号(d1),但是应当理解的是,麦克风阵列206可以接收来自多个用户的音频信号,例如在会议呼叫中其可以都被作为所期望的音频信号来对待。在这种情形下,多个来源的所想要的音频信号到达麦克风阵列206。
[0088] 设备102可以是电视、膝上型计算机、移动电话或者用于实施本发明的任何其他适当的设备,其具有多个麦克风,从而可以实施波束形成。此外,可以针对利用立体麦克风拾取的任何适当装备启用波束形成器404。
[0089] 在前面描述的实施例中,扬声器310是用于输出单声道音频信号的单声道扬声器,并且来自波束形成器404的波束形成器输出是单个信号。但是这仅仅是为了简化呈现,并且本发明不限于仅被用于这样的系统。换句话说,本发明的一些实施例可以使用立体声扬声器来输出立体声音频信号,并且本发明的一些实施例可以使用输出多个信号的波束形成器。
[0090] 在前面描述的实施例中,对应于回波状态的波束形成器系数和对应于无回波状态的波束形成器系数被存储在设备102的存储器214中。但是在替换实施例中,对应于回波状态的波束形成器系数和对应于无回波状态的波束形成器系数可以被存储在未集成到设备102中但是可以由设备102访问(例如使用诸如USB接口之类的适当接口或者例如利用调制解调器通过网络106访问)的数据存储库中。
[0091] 当在麦克风阵列206的麦克风4021、4022和4023处没有显著接收到回波信号时可以使用无回波状态。这或者可以在通信事件中没有正从扬声器310输出回波信号时发生。可替换地,这可以在设备102被设置成使得在麦克风阵列206的麦克风4021、4022和4023处没有显著接收到输出自扬声器的信号时发生。举例来说,当设备102操作在免提模式下时,则可以在麦克风阵列206的麦克风4021、4022和4023处显著接收到回波信号。但是当设备102没有操作在免提模式下时(例如在使用头戴式耳机时),则可能没有在麦克风阵列
206的麦克风4021、4022和4023处显著接收到回波信号,因此(在回波状态下)不需要改变波束形成器系数以减少回波,这是因为尽管存在扬声器信号但是不存在显著的回波。
[0092] 在前面描述的实施例中,波束形成器系数本身被存储在存储器214中并且在步骤S510和S552中被获取。作为一个例子,波束形成器系数可以是有限脉冲响应(FIR)滤波器系数w,其描述将要由波束形成器404针对麦克风信号y1(t)、y2(t)和y3(t)施加的滤波。可以利用公式w=f(G)计算FIR滤波器的系数,其中 G是与信号有关的统计度量,并且 f()是用于从中计算波束形成器滤波器系数w的预定函数。在一些实施例中,取代存储及获取波束形成器滤波器系数w,将统计度量G存储在存储器214中并且在步骤S510和S522中从存储器214获取。统计度量G提供关于滤波器系数 w的指示。一旦获取了度量 G之后,可以利用预定函数f()计算波束形成器滤波器系数 w。随后可以由波束形成器404针对麦克风阵列206的麦克风4021、4022和4023所接收的信号施加所计算的波束形成器滤波器系数。与存储滤波器系数w相比,可能需要较少的存储器来存储度量 G。此外,从精度和/或性能的角度而言可能有利的是对于G求平均(而不是对波束形成器滤波器系数 w本身求平均),因为这样可以给出更好的结果。当度量G被存储在存储器214中时,可以通过平滑地适配度量G来平滑地适配波束形成器404的行为。
[0093] 在前面描述的实施例中,由波束形成器处理的信号是由麦克风阵列206接收的音频信号。但是在替换实施例中,所述信号可以是另一种类型的信号(比如一般宽带信号、一般窄带信号、雷达信号、声纳信号、天线信号、无线电波或微波)并且可以应用相应的方法。举例来说,可以在确定特定信号状态的发起时从存储器获取波束形成器状态(即波束形成器系数)。
[0094] 此外,虽然特别参照优选实施例示出并描述了本发明,但是本领域技术人员将会理解的是,在不背离由所附权利要求书所限定的本发明的范围的情况下可以在形式和细节方面做出许多改变。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用