会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~

传感器件

阅读:405发布:2021-03-03

IPRDB可以提供传感器件专利检索,专利查询,专利分析的服务。并且本发明提供一种抑制了由负浪涌或电压降低导致的误动作的传感器件。该传感器件的特征在于,包括:电特性与物理量相应地变化的传感元件;对上述传感元件的输出信号进行处理的信号处理电路;位于电源端子与上述信号处理电路之间的晶体管元件;将上述晶体管元件的漏极与栅极连接或者将上述晶体管元件的集电极与基极连接的电阻体;和将上述晶体管元件的栅极或基极与GND连接的、具有阈值电压的元件,上述元件在向上述信号处理电路供给的供给电压低于上述阈值电压的情况下,限制从上述电阻体向GND的方向流动的电流。,下面是传感器件专利的具体信息内容。

1.一种传感器件,其特征在于,包括:电特性与物理量相应地变化的传感元件;

对所述传感元件的输出信号进行处理的信号处理电路;

位于电源端子与所述信号处理电路之间的晶体管元件;

将所述晶体管元件的漏极与栅极连接或者将所述晶体管元件的集电极与基极连接的电阻体;和将所述晶体管元件的栅极或基极与GND连接的、具有阈值电压的元件,所述元件在向所述信号处理电路供给的供给电压低于所述阈值电压的情况下,限制从所述电阻体向GND的方向流动的电流。

2.如权利要求1所述的传感器件,其特征在于:所述晶体管元件是第一场效应晶体管,将所述第一场效应晶体管的源极与所述电源端子连接,将所述第一场效应晶体管的漏极与所述信号处理电路连接,所述第一场效应晶体管的栅极经所述元件与所述GND连接。

3.如权利要求2所述的传感器件,其特征在于:所述元件是第二场效应晶体管,

将所述第二场效应晶体管的源极与所述第一场效应晶体管的栅极连接,将所述第二场效应晶体管的漏极和栅极与所述GND连接。

4.如权利要求3所述的传感器件,其特征在于:所述第一场效应晶体管的阱与所述第一场效应晶体管的漏极连接,所述第二场效应晶体管的阱与所述第二场效应晶体管的源极连接。

5.如权利要求2所述的传感器件,其特征在于:所述元件是将多个场效应型晶体管串联连接而成的晶体管电路,将所述晶体管电路的源极与所述第一晶体管的栅极连接,将所述晶体管电路的漏极和栅极与所述GND连接。

6.如权利要求2所述的传感器件,其特征在于:所述元件是PN结二极管,

将所述二极管的阳极与所述第一场效应晶体管的栅极连接,将所述二极管的阴极与所述GND连接。

7.如权利要求2所述的传感器件,其特征在于:所述元件是将多个PN结二极管串联连接而成的二极管电路,将所述二极管电路的阳极与所述第一场效应晶体管的栅极连接,将所述二极管电路的阴极与所述GND连接。

8.如权利要求1所述的传感器件,其特征在于:所述晶体管元件是第一PNP晶体管,将所述第一PNP晶体管的发射极与所述电源端子连接,将所述第一PNP晶体管的集电极与所述信号处理电路连接,所述第一PNP晶体管的基极经所述元件与所述GND连接。

9.如权利要求8所述的传感器件,其特征在于:所述元件是第二PNP晶体管,

将所述第二PNP晶体管的发射极与所述第一PNP晶体管的基极连接,将所述第二PNP晶体管的集电极和基极与所述GND连接。

10.如权利要求8所述的传感器件,其特征在于:所述元件是将多个PNP晶体管串联连接而成的晶体管电路,将所述晶体管电路的发射极与所述第一PNP晶体管的基极连接,将所述晶体管电路的集电极和基极与所述GND连接。

11.如权利要求8所述的传感器件,其特征在于:所述元件是PN结二极管,

将所述二极管的阳极与所述第一PNP晶体管的基极连接,将所述二极管的阴极与所述GND连接。

12.如权利要求8所述的传感器件,其特征在于:所述元件是将多个PN结二极管串联连接而成的二极管电路,将所述二极管电路的阳极与所述第一PNP晶体管的基极连接,将所述二极管电路的阴极与所述GND连接。

13.如权利要求1所述的传感器件,其特征在于:包括与所述信号处理电路并联连接的电容器。

14.如权利要求1所述的传感器件,其特征在于:所述元件的阈值电压是所述处理电路的存储器中存储的信息以上的电压值。

说明书全文

传感器件

技术领域

[0001] 本发明涉及从外部供给电源的传感器件,特别涉及对于电源线中发生的负浪涌具有抗破坏性和抗误动作性的传感器件。

背景技术

[0002] 电源线中发生了负浪涌或电压变动的情况下,向负载电路供给的供给电压变负,负载电路中流动逆电流,有时发生损坏。作为针对这样的技术问题的现有技术,有专利文献1中记载的技术。
[0003] 专利文献1中记载的技术,是在电源与负载电路之间设置P型FET,对向负载电路供给的供给电压进行电阻分压,将其中点电压输入P型FET的栅极的方案。输入侧的极性正常连接的情况下,P型FET成为导通(ON)状态,对负载电路供给电源电压,输入侧的极性反向连接的情况下,P型FET成为截止(OFF)状态,进行保护使得不对负载电路施加反向极性电压。
[0004] 专利文献1:日本特开2000-341848号公报

发明内容

[0005] 发明要解决的技术问题
[0006] 但是,近年来成本降低的要求正在提高,需要使设置在导体芯片外的保护电路简化。该情况下,与以往相比在电源线中发生持续较长时间的负浪涌或电压降低。负载电路侧的电压不足P型FET的阈值电压时,P型FET截止,负载电路中蓄积的电荷不再经P型FET向电源侧放电。但是,该状态之后负浪涌仍持续的情况下,负载电路中蓄积的电荷经分压电阻的放电持续,最终蓄积的电荷被完全放电。这样,负载电路被复位,因此有可能发生输出异常值或重新起动动作等误动作。
[0007] 本发明是鉴于上述情况而完成的,其目的在于提供一种即使在电源线中发生了持续较长时间的负浪涌或电压降低的情况下也抑制负载电路中的电压降低、抗误动作性高的传感器件。
[0008] 解决技术问题的技术方案
[0009] 为了达成上述目的,本发明的传感器件的特征在于,包括:电特性与物理量相应地变化的传感元件;对所述传感元件的输出信号进行处理的信号处理电路;位于电源端子与所述信号处理电路之间的晶体管元件;将所述晶体管元件的漏极与栅极连接或者将所述晶体管元件的集电极与基极连接的电阻体;和将所述晶体管元件的栅极或基极与GND连接的、具有阈值电压的元件,所述元件在向所述信号处理电路供给的供给电压低于所述阈值电压的情况下,限制从所述电阻体向GND的方向流动的电流。
[0010] 发明效果
[0011] 根据本发明,能够提供一种即使在电源线中发生了持续较长时间的负浪涌或电压降低的情况下也能够抑制负载电路中的电压降低的、抗误动作性高的传感器件。

附图说明

[0012] 图1是第一实施例的传感器件的结构。
[0013] 图2是第二实施例的传感器件的结构。
[0014] 图3是第三实施例的传感器件的结构。
[0015] 图4是第四实施例的传感器件的结构。
[0016] 图5是第五实施例的传感器件的结构。
[0017] 图6是本发明技术中的施加负浪涌时的内部电源电压变动波形例。
[0018] 图7是现有结构中的施加负浪涌时的内部电源电压变动波形例。
[0019] 图8是现有的传感器件的结构。
[0020] 图9是第五实施例的传感器件的应用例。
[0021] 图10是第五实施例的传感器件的应用例。

具体实施方式

[0022] 以下参考附图说明本发明的实施方式。
[0023] 用图1、6、7、8说明本发明的第一实施例的传感器件。图1表示第一实施例的传感器件的结构。图6表示本发明技术中的施加负浪涌时的内部电源电压变动波形例。图7表示现有结构中的施加负浪涌时的内部电源电压变动波形例。图8表示现有的传感器件的结构。
[0024] 用图1说明第一实施例中的传感器件的结构。
[0025] 第一实施例中的传感器件1包括供给电压Vb的电源端子2、GND端子3、发生与物理量相应的电信号的传感元件20、对向传感元件20的电源供给和来自传感元件20的输出信号进行处理的传感器电路10。传感器电路10包括对来自传感元件20的输出信号进行处理的信号处理电路11、位于电源端子2与信号处理电路11之间的P型场效应晶体管(此后称为PMOS)12、将PMOS12的漏极与栅极连接的电阻14和将PMOS12的栅极与GND连接的PMOS13。PMOS13的栅极和漏极与GND连接,源极与PMOS12的栅极连接。PMOS13具有阈值电压Vth1,PMOS13的源极电压大于阈值电压Vth1的情况下,PMOS13导通。
[0026] 用图1和图7说明第一实施例中的传感器件的动作。
[0027] 通常时,PMOS13的源极电压大于阈值电压Vth1,所以PMOS13导通,电流Is从PMOS12的漏极经PMOS13流向GND。与PMOS13的导通电阻相比电阻14的电阻值充分大的情况下,PMOS12成为导通状态,电源端子2与信号处理电路11导通。然后,从电源端子2对处理电路11供给供给电压Vs。第一实施例中的传感器件1采用通常时经PMOS12对信号处理电路11供给电源电压的结构,PMOS12与寄生二极管相比电压降小,所以能够不依赖于温度地对处理电路11供给稳定的供给电压Vs。
[0028] 另一方面,供给电压Vs因负浪涌等而异常降低的情况下,在PMOS13的源极电压成为阈值电压Vth1的时刻,PMOS13自发地截止。因PMOS13截止,PMOS13中流动的电流Is停止,所以PMOS12的栅极与漏极成为相同电位。因此,即使PMOS12的源极电压相对于PMOS12的漏极电压向负侧变动,PMOS12也不会导通,信号处理电路11中蓄积的电荷被维持。在PMOS13的源极电压成为阈值电压Vth1的时刻,PMOS13自发地截止,所以能够使PMOS12可靠地截止。
[0029] PMOS13在源极电压成为阈值电压Vth1的时刻截止,用PMOS13限制电流Is的流动。因此,即使发生了较长时间的负浪涌等,也能够防止处理电路中蓄积的电荷经电阻14完全放电。处理电路11的供给电压Vs被维持在阈值电压Vth附近,所以通过将阈值电压Vth设定为处理电路11中设置的存储器的存储信息以上的电压值,能够防止传感器件的误动作。
[0030] 其中,为了防止PMOS12、PMOS13的动作延迟,优选将PMOS12的阱和PMOS13的阱与供给电压Vs侧的节点连接而使各阱的电压稳定化。因此,PMOS12的阱与漏极连接,PMOS13的阱与源极连接。
[0031] 与此相对,用图8和图9说明现有结构中的传感器件的动作。现有结构中,电源电压Vb不足PMOS12的阈值电压Vth2时,PMOS12截止,但供给电压Vs此时降低至Vth2程度。之后,信号处理电路11中蓄积的电荷经电阻14a、14b持续放电,最终失去所有电荷。因此,不能够维持供给电压Vs,有可能导致传感器件的误动作。
[0032] 对第一实施例中的传感器件的效果进行总结。
[0033] 第一效果是采用通常时经PMOS12对信号处理电路11供给电源电压的结构,因为PMOS12与寄生二极管相比电压降小,所以能够不依赖于温度地对处理电路11供给稳定的供给电压Vs。
[0034] 第二效果是即使在发生了持续长时间的负浪涌或电源电压降低的情况下,也能够使对信号处理电路11的供给电压Vs的降低维持在PMOS13的阈值电压Vth1附近,所以能够防止传感器的误动作。
[0035] 第三效果是在PMOS13的源极电压变得小于阈值电压Vth1的时刻,PMOS13自发地截止,所以能够可靠地使PMOS12截止。
[0036] 用图2说明本发明的第二实施例的传感器件。图2表示第二实施例的传感器件的结构。其中,对于与本发明的第一实施例重复的点省略说明。
[0037] 第二实施例中的传感器件1的特征在于,对于第一实施例的传感器件1中的信号处理电路11,并联连接了电容器16。由此,构成由PMOS12的导通电阻与电容器16组成的低通滤波器,能够使电源电压Vb的变动难以传递至供给电压Vs。另外,能够蓄积的电荷量因电容器16而增加,所以能够抑制相对于放电量的供给电压Vs的降低量。因此,本发明的第二实施例能够进一步提高负浪涌耐性。
[0038] 用图3说明本发明的第三实施例的传感器件。图3表示第三实施例的传感器件的结构。其中,对于与本发明的第一实施例重复之处省略说明。
[0039] 第三实施例中的传感器件1使用PNP双极型晶体管(此后称为PNP晶体管)15、PNP晶体管17代替第一实施例的传感器件1中的PMOS12和PMOS13。将PNP晶体管15的发射极与电源端子2连接,将PNP晶体管15的集电极与信号处理电路11连接,将PNP晶体管15的基极与PNP晶体管17的发射极连接。PNP晶体管17的集电极和基极与GND连接。通常时,基极电流Ib1、Ib2流过PNP晶体管15和PNP晶体管17,所以成为导通状态,供给电压Vs低于PNP晶体管17的阈值电压Vth时,PNP晶体管17成为截止状态,同时,PNP晶体管15的基极电压和集电极电压成为相同电位。因此,即使PNP晶体管15的发射极电压相对于集电极电压向负侧变动,PNP晶体管15也不会导通,信号处理电路11中蓄积的电荷被维持。因此,能够使供给电压Vs维持在PNP晶体管17的阈值电压Vth附近。本实施例的传感器件能够得到与第一实施例中的传感器件同样的效果。进而,因为双极型晶体管能够流动比MOSFET更大的电流,所以适于耗电大的传感器件。
[0040] 用图4说明本发明的第四实施例的传感器件。图4表示第四实施例的传感器件的结构。其中,对于与本发明的第一实施例重复之处省略说明。
[0041] 第四实施例中的传感器件1使用PN结二极管18代替第一实施例的传感器件1中的PMOS13。将电阻14与PMOS12的栅极的连接点与PN结二极管18的阳极连接,PN结二极管18的阴极与GND连接。通常时,正向电流Id流过PN结二极管18,所以PMOS12导通。供给电压Vs低于PN结二极管18的正向电压Vd时,正向电流Id被PN结二极管18限制,PMOS12的栅极与漏极成为相同电位。因此,即使PMOS12的源极电压相对于漏极电压向负侧变动,PMOS12也不会导通,信号处理电路11中蓄积的电荷被维持。因此,能够使供给电压Vs维持在PN结二极管18的正向电压Vd附近。本实施例的传感器件能够得到与第一实施例的传感器件同样的效果。
[0042] 用图5说明本发明的第五实施例的传感器件。图5表示第五实施例的传感器件的结构。其中,对于与本发明的第一实施例重复之处省略说明。
[0043] 第五实施例中的传感器件1是对于第四实施例的传感器件1中的PN结二极管18串联连接了PN结二极管18b的结构。由此,在供给电压Vs降低而不足PN结二极管18、18b的正向电压Vd的2倍值时,正向电流Id被限制,PMOS12的栅极与漏极成为相同电位。因此,即使PMOS12的源极电压相对于漏极电压向负侧变动,PMOS12也不会导通,信号处理电路11中蓄积的电荷被维持。因此,能够使供给电压Vs维持在PN结二极管18、18b的正向电压Vd的2倍值附近。本实施例的传感器件在第一实施例中的传感器件的效果之外还具有以下效果。即,能够与PN结二极管的串联数相应地调整供给电压Vs的保持电压这一点。
[0044] 另外,上述调整保持电压的技术也能够使用P型场效应晶体管或PNP双极型晶体管来实现。例如,如图9所示,有在第一实施例中的传感器件1的PMOS13的漏极与GND之间还追加PMOS13b,将PMOS13的栅极和漏极与PMOS13b的源极连接,将PMOS13b的栅极和漏极与GND连接的方法。另外,如图10所示,有在第三实施例中的传感器件1的PNP晶体管17的集电极与GND之间还追加PNP晶体管17b,将PNP晶体管17的基极和集电极与PNP晶体管17b的发射极连接,将PNP晶体管17b的基极和集电极与GND连接的方法。使用上述各结构的情况下也能够调整供给电压Vs的保持电压。
[0045] 符号说明
[0046] 1:传感器件,2:电源端子,3:GND端子,10:传感器电路,11:信号处理电路,12:MOSFET,13:MOSFET,14:电阻,15:晶体管,16:电容器,17:晶体管,18:二极管,19:二极管,
20:传感元件。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用