会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 燃料种类 / 液化 / 用于液化富烃流的方法

用于液化富烃流的方法

阅读:649发布:2021-02-23

IPRDB可以提供用于液化富烃流的方法专利检索,专利查询,专利分析的服务。并且本发明涉及用于在分离富C2+馏分的同时液化富烃馏分的方法,其中,富烃馏分的冷却和液化在与冷却介质混合物循环回路的冷却介质混合物间接热交换的情况下进行并且富C2+馏分的分离在可调节的温度水平上进行,在所述冷却介质混合物循环回路中,所述冷却介质混合物至少被两级地压缩,其中,所述冷却介质混合物被分为气态和液态馏分,两个馏分都被冷却、基本上膨胀到第一压缩机级的抽吸压力上并且至少部分地蒸发。按照本发明,使所述冷却介质混合物(15)的液化后的、之前气态的馏分的至少一个部分流(19,24)至少暂时地膨胀(j,h)并且与所述冷却介质混合物(21)的膨胀后的液态馏分混合。,下面是用于液化富烃流的方法专利的具体信息内容。

1.用于在分离富C2+馏分的同时液化富烃馏分的方法,其中,所述富烃馏分的冷却和液化在与冷却介质混合物循环回路的冷却介质混合物间接热交换的情况下进行并且所述富C2+馏分的分离在可调节的温度水平上进行,在所述冷却介质混合物循环回路中,所述冷却介质混合物至少被两级地压缩,其中,所述冷却介质混合物被分离为气态和液态馏分,两个馏分都被冷却、基本上膨胀到第一压缩机级的抽吸压力上并且至少部分地蒸发,其特征在于,所述冷却介质混合物的气态馏分(15)仅仅逆着自身液化,并且使所述冷却介质混合物的逆着自身液化后的、之前气态的气态馏分(15)的至少一个部分流(19,24)至少暂时地膨胀(j,h)并且与所述冷却介质混合物的膨胀后的液态馏分(21)混合。

2.根据权利要求1所述的方法,其特征在于,所述冷却介质混合物的液化后的、之前气态的的气态馏分(15)的所述部分流(19,24)在所述待液化的富烃馏分(1,2)与所述冷却介质混合物之间的热交换(的冷端和/或在适当的中间温度下被抽出、被膨胀(j,h)并且与所述冷却介质混合物的膨胀后的液态馏分(21)混合,其中,当冷却介质混合物的气态馏分(15)相对于沸腾状态具有至少5℃的过冷却时则存在适当的中间温度。

3.根据权利要求1或2所述的方法,其特征在于,所述待液化的富烃馏分(1,2)与所述冷却介质混合物之间的热交换在多股流式热交换器(E3)中进行。

4.根据权利要求1或2所述的方法,其中,所述富C2+馏分的分离在至少一个分离塔中进行,其特征在于,至少暂时地将所述待液化的富烃馏分的一个部分流(5)供应给所述分离塔(T)的塔顶区域。

5.根据权利要求1或2所述的方法,其中,所述富C2+馏分的分离在至少一个分离塔中进行,其特征在于,至少暂时地将所述待液化的富烃馏分的一个部分流(5)供应给所述分离塔(T)的池底区域。

6.根据权利要求1或2所述的方法,其中,所述富C2+馏分的分离在至少一个分离塔中进行,其特征在于,借助于配置给所述分离塔(T)的煮沸器(E4)调节分离塔的池底温度。

7.根据权利要求2所述的方法,其特征在于,当冷却介质混合物的气态馏分(15)相对于沸腾状态具有至少10℃的过冷却时则存在适当的中间温度。

8.根据权利要求3所述的方法,其特征在于,所述多股流式热交换器构造为板式热交换器或缠绕式热交换器。

说明书全文

用于液化富烃流的方法

技术领域

[0001] 本发明涉及一种用于在分离富C2+馏分的同时液化富烃馏分的方法,其中,富烃馏分的冷却和液化在与冷却介质混合物循环回路的冷却介质混合物间接热交换的情况下进行并且富C2+馏分的分离在可调节的温度水平上进行,在所述冷却介质混合物循环回路中,所述冷却介质混合物至少被两级地压缩,其中,所述冷却介质混合物被分为气态和液态馏分,两个馏分都被冷却、基本上膨胀到第一压缩机级的抽吸压力上并且至少部分地蒸发。

背景技术

[0002] 例如由DE-A 197 22 490公开了一种所述类型的用于液化富烃馏分的方法。这种液化方法例如在使天然气液化时使用。在所述类型的液化方法中通常需要分离出确定的成分,因为它们在所需的低温时固定地失效和/或损害所规定的产品质量。在最简单的情况下仅仅设置一个用于将不期望的成分从待液化的富烃馏分中分离出的分离器就足够。相反,较轻天然气成分例如乙烷的选择性分离不仅对于方法实施而且对于在改变的边界条件下的可调整性提出高得多的要求。
[0003] 在较小至中型产能的天然气液化过程中(对此理解为年产30,000至1百万吨LNG的生产率)常常使用具有仅仅一个回路压缩机的混合物回路,其也被称为SMR(Single Mixed Refrigerant)过程。其缺点是,冷却介质液相只能在一个压力水平下蒸发。因此,期望的温度曲线的有针对性的调节和调整很难,因为在这种过程中干预可能性或自由度的数量受到限制。例如需要相应的温度曲线来将待液化的富烃馏分的部分冷凝物精确地加热到对于不期望的成分的期望的分离所需的确定温度上。

发明内容

[0004] 本发明的任务在于,给出一种所述类型的用于液化富烃馏分并且同时分离富C2+馏分的方法,该方法避免了上述缺点。特别是应给出一种所述类型的用于液化富烃馏分的方法,该方法一方面稳固并且另一方面允许在天然气液化过程中有效且可控地分离甲烷和高烃。因此,冷却介质流的蒸发曲线被这样设计,使得其可直接用于调整甲烷和高烃的分离。
[0005] 为了解决所述任务,建议了一种所述类型的用于液化富烃馏分并且同时分离富C2+馏分的方法,该方法的特征是,使所述冷却介质混合物的液化后的、之前气态的馏分的至少一个部分流至少暂时地膨胀并且与所述冷却介质混合物的膨胀后的液态馏分混合。
[0006] 借助于液态馏分和液化后的、之前气态的馏分的量比的改变可在由前述两个馏分混合而成的冷却介质蒸发期间这样地影响温度曲线,使得按照任务使用于冷却和部分冷凝所述待液化的富烃馏分的热交换器的上部区域中的混合后冷却介质的温度总是处于所述待液化的馏分的温度以下。本发明的方法允许待液化的富烃馏分在进入到被设置用于分离富C2+馏分的分离装置或分离塔中时的温度的足够的可调整性,从而使得可以调节液化产品或LNG(Liquefied Natural Gas)中的C2+烃的期望的浓度。
[0007] 本发明的用于在分离富C2+馏分的同时液化富烃馏分的方法的其它有利的构型是从属权利要求的主题,其特征在于,
[0008] -所述冷却介质混合物的液化后的、之前气态的馏分的所述部分流在所述待液化的富烃馏分与所述冷却介质混合物之间的热交换的冷端和/或在适当的中间温度下被抽出、被膨胀并且与所述冷却介质混合物的膨胀后的液态馏分混合,其中,当冷却介质混合物相对于沸腾状态具有至少5℃、优选至少10℃的过冷却时则存在适当的中间温度。
[0009] -所述待液化的富烃馏分与所述冷却介质混合物之间的热交换在多股流式热交换器中进行,所述多股流式热交换器优选构造为板式热交换器或缠绕式热交换器。
[0010] -如果所述富C2+馏分的分离在至少一个分离塔中进行,则至少暂时地将所述待液化的富烃馏分的一个部分流供应给所述分离塔的塔顶区域和/或池底区域。
[0011] -如果所述富C2+馏分的分离在至少一个分离塔中进行,则借助于配置给所述分离塔的煮沸器调节分离塔的池底温度。

附图说明

[0012] 以下借助于图1和2中所示的实施例详细解释本发明的用于在分离富C2+馏分的同时液化富烃馏分的方法及其另外的构成从属权利要求主题的构型。

具体实施方式

[0013] 下面在阐述图2中所示的实施例时仅仅描述与图1中所示方法的区别。
[0014] 本发明的用于液化富烃馏分的方法的在图1和2中示出的实施例具有分离塔T,该分离塔用于将富C2+的馏分从待液化的富烃馏分中分离出。待液化的馏分在下面被称为天然气流并且通过管路1供应给多股流式热交换器E3。
[0015] 所述多股流式热交换器优选构造为焊接的铝板式热交换器。根据设备大小而定优选设置1至6个并联的热交换器单元。替代地,所述多股流式热交换器E3也可以构造为缠绕式热交换器。在此,铝板式热交换器优选用于年产30,000至500,000吨LNG的液化产能,缠绕式热交换器优选用于年产100,000至1,000,000吨LNG的液化产能。
[0016] 天然气流在热交换器E3中被冷却、部分冷凝并且接着通过阀a膨胀到分离塔T的塔顶区域中。富甲烷的气态馏分在分离塔T的塔顶处通过管路2被抽出、在热交换器E3中液化以及过冷却并且接着通过管路3(在该管路中设置调整阀e)抽出并且被供应给其另外的应用或者被中间储存。所述馏分是液化产品(LNG)。从分离塔T的池底通过同样具有调整阀d的管路4抽出富C2+的液态馏分并且将其供应给其另外的应用。
[0017] 通过管路5和调整阀b供入所述天然气流的一个部分流,由此可影响分离塔T的塔顶温度并且从而影响所述通过管路2抽出的富甲烷液态馏分的组成。通过煮沸器E4和/或经由管路6和膨胀阀c供入天然气流的一个部分流也可影响分离塔T的池底温度以及所述通过管路4抽出的液态馏分的组成。
[0018] 冷却介质混合物回路包括两级的压缩机单元,后者包括第一和第二压缩机级C1或C2。在所述两个压缩机级下游分别连接一个冷却器E1或E2。此外,设置有低压分离器D1、中压分离器D2以及高压分离器D3。从低压分离器D1的顶部(其用作第一压缩机级C1的安全装置)通过管路11将在冷却回路中循环的冷却介质混合物供应给第一压缩机级C1。在该第一压缩机级中,冷却介质混合物被压缩到期望的中间压力(该中间压力通常在7至
35bar之间,优选在10至25bar之间)、接着在冷却器E1中被冷却、部分地冷凝并且通过管路12供应给中压分离器D2。从该中压分离器通过管路20抽出一液态馏分(在下面还将详细解释所述液态馏分),而将冷却介质混合物的通过管路13从所述分离器D2的顶部抽出的气相供应给所述第二压缩机级C2并且在该第二压缩机级中压缩到期望的最终压力(该最终压力通常在30至80bar之间,优选在40bar至60bar之间)。接着,所述冷却介质混合物在冷却器E2中被冷却、部分地冷凝并且通过管路14供应给所述高压分离器D3。在所述分离器D3的池底中出现的液态馏分通过管路16(在该管路中设有膨胀阀k)被回输到中压分离器D2前面。
[0019] 气态的冷却介质份额在所述分离器D3的顶部处通过管路15被抽出、在热交换器E3中被液化以及过冷却并且通过管路17被从所述热交换器中抽出。在所述馏分或所述馏分的一个部分流通过管路18被引导穿过热交换器E3并且在此完全蒸发之前,它们在膨胀阀g中膨胀到最低的回路压力上。接着通过管路10将完全蒸发后的馏分供应给分离器D1。
[0020] 在图1所示的方法中,液态的冷却介质份额通过管路20被从分离器D2的池底抽出、被供应给热交换器E3并且在该热交换器中被过冷却。被过冷却后的液态馏分通过管路21被从热交换器E3中抽出、在阀f中膨胀到最低的回路压力上并且接着通过管路22重新供应给所述热交换器E3。在所述热交换器中蒸发的馏分通过管路23与管路10中的已经描述过的蒸发后的馏分混合。
[0021] 在所述阀f和g中通常膨胀到下述压力上,所述压力除了不可避免的压力降之外相应于第一压缩机级C1的抽吸压力。通过适当选择所述冷却介质混合物的组成、量和/或蒸发压力不仅可以调节待液化的富烃馏分或待液化的天然气流的最终温度而且可以调节其流量。
[0022] 与图1中所示的方法不同的是,在图2中所示的实施例中,冷却介质混合物的待供应给热交换器E3的液态馏分不是从分离器D2中而是从分离器D3中通过管路20′抽出。因此,在分离器D2的池底出现的液态馏分通过管路16′(在该管路中设有泵p)供应给分离器D3。
[0023] 图2中所示的方法实施例与图1中所示的方法实施例相比更高效,其允许1至5%的效率改善,但是需要泵,所述泵导致投资成本的提高和维护耗费的增大。因此,图1中的方法实施例优选在较小的设备产能(年产30,000至500,000吨LNG)的情况下使用,而图2中所示的方法实施例优选在较大的设备产能(年产100,000至1,000,000吨LNG)的情况下使用。
[0024] 由于在阀f和g中使冷却介质混合物的液态的过冷却后的以及液化后的(之前气态的)馏分如前所述地膨胀到基本上相同的蒸发压力上,因此热交换器E3中的在所述阀f的下游的冷却介质流的温度变化曲线不能自由选择。气态的和液态的冷却介质馏分的组成又通过分离器D2和D3中的均衡而耦合。因此所述阀f的阀姿态不能以足够的程度影响所述热交换器E3的上部或热部中的温度曲线。
[0025] 因此,按照本发明使所述冷却介质混合物15的液化后的(之前气态的)馏分的至少一个部分流至少暂时膨胀并且与管路22中的冷却介质混合物的膨胀后的液态馏分混合。在附图中示出两个可能的冷却介质混合物部分流19和24,它们在阀h或j中膨胀后可与管路22中的膨胀后的冷却介质混合物混合。实际上在多数情况下要么设置阀h要么设置阀j。但是原则上冷却介质混合物部分流19和24可以单独地或共同地用于调节所述温度或温度曲线。
[0026] 在此,冷却介质混合物部分流19和/或24在热交换器E3的冷端和/或在适当的中间温度下通过管路19或24被抽出、在阀h或j中膨胀并且与冷却介质混合物22的膨胀后的液态馏分混合。当冷却介质混合物15相对于沸腾状态具有至少5℃、优选至少10℃的过冷却时则存在适当的中间温度。
[0027] 借助于本发明的方法可以足够地调节待液化的富烃馏分或天然气流1在进入到分离塔T中时的温度,如其对于在液化产品或LNG中调节C2+烃的期望浓度所需的那样。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用