会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 表面处理和涂层 / 化学气相沉积 / 射频化学气相沉积法合成β-C3N4超硬薄膜材料

射频化学气相沉积法合成β-C3N4超硬薄膜材料

阅读:787发布:2021-03-03

IPRDB可以提供射频化学气相沉积法合成β-C3N4超硬薄膜材料专利检索,专利查询,专利分析的服务。并且本发明公开了一种新的射频化学气相沉积法合成β-C3N4超硬薄膜材料的方法。它是采用乙炔气和氮气为气源,采用RF-CVD方法合成超硬材料、晶体氮化碳薄膜,具有较高的显微硬度、耐腐蚀和耐氧化性能,是一高效、低成本合成优质氮化碳薄膜的方法,可以在各种材料、各种形状工件、较大尺寸工件上形成氮化碳薄膜。,下面是射频化学气相沉积法合成β-C3N4超硬薄膜材料专利的具体信息内容。

1.一种新型射频化学气相沉积法合成β-C3N4超硬薄膜技术,其特征在于:采用按一定比例的乙炔气和氮气为原料,工件置于真空室内的射频电极上,在一定温度、真空度下,在射频电场作用下辉光放电而离子化成等离子体,碳和氮离子发生化学反应沉积生成氮化碳,再经原位退火,形成超硬氮化碳晶体化薄膜材料;

2.按权利要求1所述的合成β-C3N4超硬薄膜技术,其特征在于:置入工件后,所抽真空度不低于0.5Pa,并调节乙炔和氮气为≤1∶10到1∶50,使气压控制在≥100到300Pa,在使工件升温到≥400℃后,在射频电场作用下真空中辉光放电,再在氮气氛下原位退火,退火温度控制在比氮化碳沉积温度高于50℃以上,退火时间60分钟,然后,炉温冷却至≤80℃;

3.按权利要求1所述的合成β-C3N4超硬薄膜技术,其特征在于:根据工件材质,在氮化碳薄膜和工件间,先沉积一层过渡层,该过渡层薄膜可采用非晶硅、二氧化硅或其它与工件、氮化碳都有良好附着的材料。

说明书全文

射频化学气相沉积法合成β-C3N4超硬薄膜材料

本发明公开了一种新的射频化学气相沉积法合成β-C3N4超硬薄膜材料的方法,它属于功能材料技术领域,其国际专利分类号为C09;C23。

1990年美国California大学的M.L.Cohen等人[A.Y.Liu and M.L.Co-hen,Science 245,(1989),841.;A.Y.Liu and M.L.Cohen,Phys.Rev.B42(1990),10727],应用固体物理、量子化学理论和计算机技术,从原子和分子水平上人工设计了类似β-Si3N4晶体结构的C-N化合物:β-C3N4晶体。他们计算出β-C3N4的晶体结构和电子能带。结果为:晶格常数a=6.44,平均结合能Ecoh=5.8eV/atom,体变模量B=4.27~4.65Mbar。它的体变模量接近或超过金刚石(B=4.43Mbar),说明它可能具有接近或超过金刚石的硬度。

根据这种思想,国际上掀起了研究和应用这种新型超硬材料的热潮。起初采用CH4和N2的热分解方法合成β-C3N4,由于无法打开C-H键和N-N键而告失败。直到1993年美国Harvard大学[C.Niu et al,Science 261,(1993),334]用激光蒸发和原子束喷注相结合,成功地获得了β-C3N4晶体薄膜。美国伊利诺斯州的西北大学采用dc反应磁控溅射法[D.Li et al,J.Vac.Sci.Tech-nol.A 12(4)(1994),1470],美国Houston大学采用电子回旋共振法,相继合成了β-C3N4薄膜。值此,这种新材料的研究获得了重大进展。我国许多单位也在积极开展β-C3N4的研究,清华大学采用离子束增强沉积法合成β-C3N4[H.W.Song et al.J.Phys.6(1994),6125],中科院空间技术中心采用电子束蒸发和离子束合成相结合制备β-C3N4(冯毓材等,94’中国材料研究讨论会,1994.11.北京),复旦大学采用的方法则类似于美国Harvard大学的方法(任忠民等,94’中国材料研究讨论会,1994.11.北京)。综观国内外β-C3N4薄膜的制备方法,都存在设备复杂,产额低,效率差、成本高,膜层质量未达到满意的程度等问题。所得到的C-N薄膜大多数是非晶态,即使获得了晶体β-C3N4,也是散布于大片非晶态C-N中少数细小的C3N4晶体颗粒。到目前为止,尚未见报导获得大片晶体β-C3N4薄膜。β-C3N4的许多优异性能具有广阔应用前景,它的应用在不断开发之中。

本发明专利的目的:本发明采用不同于国内外报导的方法合成β-C3N4薄膜,它能采用射频等离子增强化学气相沉积法(RF-CVD)合成β-C3N4,所需设备应相对简单,可以大面积均匀成膜,所获β-C3N4薄膜为晶体结构,具有很高的显微硬度,很强的耐腐蚀和耐氧化的能力。本发明应是一种高效、低成本生长优质氮化碳薄膜的方法,且应具有较大的实用价值。

为实现本发明目的所采取的技术措施:1.原理:本发明采用乙炔气和氮气为原料,在射频电场作用下离化成等离子体,碳和氮离子发生化学反应生成氮化碳,沉积于工件上形成氮化碳薄膜。

2.工艺步骤:将清洗干净的工件置于真空室内射频电源电极上,抽真空至设备能达到的真空度,不低于0.5Pa,并对工件进行加热。当工件温度达到400℃以上,通入乙炔气和氮气,调节乙炔和氮气的比率(乙炔气∶氮气=1∶10到1∶50),控制气压在100~300Pa范围,开启射频电源,真空室内即有辉光产生,在工件表面有氮化碳薄膜生成。当氮化碳薄膜达到需要的厚度之后,关闭气源,抽除真空室内残余气体。为了提高氮化碳薄膜的附着力,将工件在真空室内进行氮气气氛原位退火,退火温度控制在比氮化碳沉积温度高50℃,退火时间60分钟,然后,工件随炉自然冷却至80℃以下方可出炉。

为了提高氮化碳薄膜的附着力,根据工件材质的特点,在氮化碳薄膜和工件之间,先淀积一层过渡层。过渡层薄膜可采用非晶硅、二氧化硅或其他与工件和氮化碳都有良好附着的材料。

3.淀积β-C3N4超硬薄膜的装置图,如附图。

本发明与背景技术相比所具有的有益效果:1.本发明采用的设备是常规的射频等离子化学气相淀积设备,国外采用的大功率激光蒸发设备需要十几万美元,一般国产RF-CVD设备只需十多万元人民币。而且该设备操作技术并不复杂、运行费用低。设备是负压运行,所消耗气源量少,因而运行成本低。本发明易于推广应用。

2.化学气相生长(CVD)是表面化学反应,无论是平面工件,或是曲面工件,表面都能成膜。不存在如离子束方法成膜时的“视线效应”那种缺点。根据工件的尺寸设计相应的真空室容量。本发明特别适用于带曲面形状、较大尺寸的工件镀制氮化碳薄膜。

3.从国内外研究氮化碳的测试结果(含氮量,TEM,FTIR,Raman等)看出,已有技术的各种方法获得的氮化碳薄膜纯度均不高,特别突出的问题是含有石墨相。石墨的存在对氮化碳薄膜的性能有极大的影响,合成氮化碳时避免石墨相的生成是提高薄膜层质量的关键技术之一。本发明采用调整碳源和氮源的比率避免石墨相的生成获得成功,采用本发明技术获得的氮化碳薄膜经FTIR和Raman光谱测试,获得单一的氮化碳峰,未发现其他杂相存在。

4.本发明采用工件原位退火的技术措施,提高了氮化碳薄膜的附着力,并且起到氮化碳薄膜强迫晶化的作用。方法很简单,但效果却十分明显,氮化碳的许多优良性能,必须获得晶体氮化碳薄膜才能显示出来。到目前为止,国内外尚未见大面积晶体氮化碳薄膜研制成功的报导。

5.本发明所用方法,对操作人员无损害,对环境无污染,原材料易得且消耗低,能源消耗不高。本发明克服了其他合成氮化碳薄膜方法的缺点,能达到本发明提出的目标。

附图说明

:附图是RF-CVD装置图附图中:1—真空室;2—工件;3—加热电沪;4—炉温电控系统;5—射频电源;6和7—电极;8—阀门;9—气体流量控制器;10—气瓶减压器;11—罗茨增压泵;12—机械泵;13—真空压力测量仪;14—温度显示仪表。
实施例:将预先镀有非晶硅或二氧化硅过渡层的工件置于真空室中,开启真空泵,真空度抽至0.1Pa,炉温加至500℃。按一定比例通入乙炔和氮气,控制气压在200Pa。开启射频电源,真空室产生辉光放电,氮化碳膜在工件表面反应生成。达到要求的沉积厚度后,关闭气源。抽空后再通入约1个大气压的氮气,进行原位退火,退火温度为550℃,退火时间1小时,然后工件随炉冷却至80℃以下出炉,即得到合成的β-C3N4超硬薄膜材料。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用