会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明授权
    • Pump circuit boosting a supply voltage
    • 泵电路提升电源电压
    • US06326834B1
    • 2001-12-04
    • US09602896
    • 2000-06-23
    • Hironobu AkitaMasaharu WadaKenji TsuchidaHironori Banba
    • Hironobu AkitaMasaharu WadaKenji TsuchidaHironori Banba
    • G05F110
    • H02M3/073
    • First transistors for charging respective one side nodes of a plurality of capacitors are connected to these nodes of the capacitors, respectively. Second transistors for outputting electric charge of each capacitor are connected between respective one side nodes of the capacitors and an output terminal, respectively. A plurality of third transistors for transferring the electric charge of the other side nodes of the capacitors to the other nodes are connected to the respective other nodes. The electric charge of each capacitor is serially transferred from nodes of a high electric potential to nodes of a lower electric potential through one path by sequentially controlling the third transistors, or the electric charge of each capacitor is parallel transferred between arbitrary nodes of a high electric potential and low nodes through a plurality of paths. By these operations, electric charge of each capacitor is recycled.
    • 用于对多个电容器的各个侧面节点进行充电的第一晶体管分别连接到电容器的这些节点。 用于输出每个电容器的电荷的第二晶体管分别连接在电容器的相应的一个侧面节点和输出端子之间。 用于将电容器的另一侧节点的电荷转移到其他节点的多个第三晶体管连接到相应的其他节点。 每个电容器的电荷通过顺序地控制第三晶体管,通过一个路径从高电位的节点被串行地传递到较低电位的节点,或者每个电容器的电荷在高电位的任意节点之间并行传送 潜在和低节点通过多个路径。 通过这些操作,每个电容器的电荷被再循环。
    • 13. 发明授权
    • Semiconductor memory device
    • 半导体存储器件
    • US6154402A
    • 2000-11-28
    • US398201
    • 1999-09-17
    • Hironobu Akita
    • Hironobu Akita
    • G11C11/409G11C7/06G11C7/12G11C7/00
    • G11C7/06G11C7/12
    • In a semiconductor memory device, charge transfer gates and a bit line precharging/equalizing circuit are inserted in the order mentioned in a bit line pair between memory cells and a sense amplifier. When the transfer gates are off, data of the memory cells are read out to the bit line pair located on the memory cell side. Subsequently, when the transfer gates are turned on, the data are transferred to the bit line pair located on the sense amplifier side. Thereafter, the transfer gates are turned off on the basis of a threshold value of the transfer gates. Then, the memory cell data transferred to the sense amplifier side are amplified by a conventional DRAM method. The bit line precharging/equalizing circuit does not require a large area. It is therefore possible to miniaturize the semiconductor memory device.
    • 在半导体存储器件中,按照存储器单元和读出放大器之间的位线对中所述的顺序插入电荷传输门和位线预充电/均衡电路。 当传输门关闭时,存储器单元的数据被读出到位于存储单元侧的位线对。 随后,当传输门被接通时,数据被传送到位于读出放大器侧的位线对。 此后,基于传送门的阈值关闭传送门。 然后,通过传统的DRAM方法放大传送到读出放大器侧的存储单元数据。 位线预充电/均衡电路不需要大面积。 因此,可以使半导体存储器件小型化。
    • 16. 发明申请
    • TRANSMISSION APPARATUS, RECEPTION APPARATUS, TRANSMISSION-RECEPTION SYSTEM, AND IMAGE DISPLAY SYSTEM
    • 传输装置,接收装置,传输接收系统和图像显示系统
    • US20120068995A1
    • 2012-03-22
    • US13265083
    • 2010-04-22
    • Seiichi OzawaHironobu Akita
    • Seiichi OzawaHironobu Akita
    • G06F3/038H04L7/00H04B15/00H04L25/03H04L27/06
    • H04L7/0008G09G3/3611G09G2310/08G09G2370/08H04L7/0091H04N5/12H04N5/66
    • The present invention provides a transmission apparatus and a reception apparatus easy to sample data correctly by a clock in the reception apparatus. In a detection section 25 of a reception apparatus 20n, based on data output from a sampler section 23, both or either of detection of a phase difference between data received by a data reception section 21 and a clock received by a clock reception section 22, and/or waveform distortion of this data is performed. A detection signal indicating a result of detection by the detection section 25 is transmitted to a transmission apparatus 10 by a detection signal transmission section 26. In the transmission apparatus 10, by a control section 15, based on the detection signal received by a detection signal reception section 14, both or either of control of adjustment of a phase between data transmitted by a data transmission section 11 and a clock transmitted by a clock transmission section 12, and/or adjustment of an amplitude of the data is performed.
    • 本发明提供一种易于通过接收装置中的时钟对数据进行正确采样的发送装置和接收装置。 在接收装置20n的检测部25中,根据从取样部23输出的数据,检测由数据接收部21接收到的数据与时钟接收部22接收的时钟之间的相位差, 和/或该数据的波形失真。 表示检测部25的检测结果的检测信号由检测信号发送部26发送到发送装置10.在发送装置10中,通过控制部15,基于由检测信号 接收部14,执行由数据发送部11发送的数据与时钟发送部12发送的时钟之间的相位的调整的控制和/或数据的振幅的调整。
    • 19. 发明授权
    • Synchronous signal generation circuit
    • 同步信号发生电路
    • US06337834B1
    • 2002-01-08
    • US09706842
    • 2000-11-07
    • Katsuaki IsobeHironobu AkitaSatoshi EtoHaruki Toda
    • Katsuaki IsobeHironobu AkitaSatoshi EtoHaruki Toda
    • G11C800
    • G11C7/225G11C7/22G11C7/222
    • The present invention provides a synchronous signal generation circuit that can be operated with a high accuracy, at a high speed and with a low power consumption without being affected by the process dispersion. The synchronous signal generation circuit of the present invention comprises a real circuit including an input receiver, an off-chip driver, and a mirror-type synchronous circuit, and a dummy circuit for determining the delay time in the mirror-type synchronous circuit, the dummy circuit including an input receiver and an off-chip driver. In the dummy circuit, the input signal is supplied first to the off-chip driver and, then, to the input receiver so as to permit the signal between the off-chip driver and the input receiver to be a small amplitude signal. It follows that the real circuit and the dummy circuit are equal to each other in the signal levels in the input and output portions of each of the input receiver and the off-chip driver. The particular construction makes it possible to minimize the error in the delay time between the real circuit and the dummy circuit relative to the process dispersion so as to improve the synchronizing accuracy and, thus, to achieve a high speed I/O.
    • 本发明提供一种同步信号发生电路,其能够以高精度,高速度且低功耗地操作,而不受处理分散的影响。 本发明的同步信号发生电路包括实际电路,其包括输入接收器,片外驱动器和反射镜型同步电路,以及用于确定镜式同步电路中的延迟时间的虚拟电路, 虚拟电路包括输入接收器和片外驱动器。 在虚拟电路中,首先将输入信号提供给片外驱动器,然后提供给输入接收器,以允许片外驱动器和输入接收器之间的信号为小振幅信号。 因此,实际电路和虚拟电路在每个输入接收器和片外驱动器的输入和输出部分的信号电平中彼此相等。 该特定结构使得可以将实际电路和虚拟电路之间相对于处理色散的延迟时间的误差最小化,从而提高同步精度,从而实现高速I / O。
    • 20. 发明授权
    • Delay control circuit synchronous with clock signal
    • 延时控制电路与时钟信号同步
    • US06292411B1
    • 2001-09-18
    • US09537424
    • 2000-03-27
    • Masahiro KamoshidaHironobu Akita
    • Masahiro KamoshidaHironobu Akita
    • G11C700
    • G11C7/222G11C7/22H03K5/135H04L7/0008H04L7/0037
    • A delay line for forward pulse has a plurality of delay units for forward pulse. A delay line for backward pulse has a plurality of delay units for backward pulse. In the delay line for backward pulse, a pulse signal is propagated in an opposite direction to a direction of the propagation in the delay line for forward pulse. A direction from an input terminal to an output terminal in the delay units for forward pulse is set to be parallel to a direction of the delay line for forward pulse. A direction from an input terminal to an output terminal in the delay units for backward pulse is set to be parallel to a direction of the delay line for backward pulse. The directions from the input terminal to the output terminal in two adjacent ones of the delay units for forward pulse are set to be opposite to one another. The directions from the input terminal to the output terminal in two adjacent ones of the delay units for backward pulse are set to be opposite to one another.
    • 用于正向脉冲的延迟线具有用于正向脉冲的多个延迟单元。 用于反向脉冲的延迟线具有用于反向脉冲的多个延迟单元。 在用于反向脉冲的延迟线中,脉冲信号在与正向脉冲的延迟线中的传播方向相反的方向上传播。 用于正向脉冲的延迟单元中的从输入端子到输出端子的方向设置为与正向脉冲的延迟线的方向平行。 用于反向脉冲的延迟单元中的从输入端子到输出端子的方向设置为与用于反向脉冲的延迟线的方向平行。 从正向脉冲的两个相邻延迟单元中的输入端子到输出端子的方向被设定为彼此相反。 在后向脉冲的两个相邻的延迟单元中从输入端子到输出端子的方向被设定为彼此相反。