会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 9. 发明授权
    • Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
    • 非易失性机电场效应器件和使用其的电路及其形成方法
    • US07115901B2
    • 2006-10-03
    • US10864186
    • 2004-06-09
    • Claude L. BertinThomas RueckesBrent M. SegalBernhard VogeliDarren K. BrockVenkatachalam C. Jaiprakash
    • Claude L. BertinThomas RueckesBrent M. SegalBernhard VogeliDarren K. BrockVenkatachalam C. Jaiprakash
    • H01L35/24H01L51/00H01L29/778
    • H01L29/78B82Y10/00B82Y99/00G11C7/065G11C13/025G11C16/0416G11C17/16G11C17/165G11C23/00G11C2213/16G11C2213/17G11C2213/79H01H1/0094H01L27/10H01L27/1052H01L27/112H01L27/11206H01L27/115H01L27/286H01L29/0665H01L29/0673H01L29/42324H01L51/0048H01L51/0052H01L51/0508Y10S977/708Y10S977/724Y10S977/742Y10S977/762Y10S977/936Y10S977/938Y10S977/94Y10S977/943
    • Non-volatile field effect devices and circuits using same. A non-volatile field effect device includes a source, drain and gate with a field-modulatable channel between the source and drain. Each of the source, drain, and gate have a corresponding terminal. An electromechanically-deflectable, nanotube switching element is electrically positioned between one of the source, drain and gate and its corresponding terminal. The others of the source, drain and gate are directly connected to their corresponding terminals. The nanotube switching element is electromechanically-deflectable in response to electrical stimulation at two control terminals to create one of a non-volatile open and non-volatile closed electrical communication state between the one of the source, drain and gate and its corresponding terminal. Under one embodiment, one of the two control terminals has a dielectric surface for contact with the nanotube switching element when creating a non-volatile open state. Under one embodiment, the source, drain and gate may be stimulated at any voltage level from ground to supply voltage, and wherein the two control terminals are stimulated at any voltage level from ground to a switching threshold voltage larger in magnitude than the supply voltage. Under one embodiment, the nanotube switching element includes an article made from nanofabric that is positioned between the two control terminals. Under one embodiment, one of the two control terminals is a release electrode for electrostatically pulling the nanotube article out of contact with the one of the source, drain and gate so as to form a non-volatile open state. Under one embodiment, the other of the two control terminals is a set electrode for electrostatically pulling the nanotube article into contact with the one of the source, drain and gate so as to form a non-volatile closed state.
    • 非易失性场效应器件和使用它的电路。 非易失性场效应器件包括在源极和漏极之间具有场可调通道的源极,漏极和栅极。 源极,漏极和栅极中的每一个都具有相应的端子。 电气可偏转的纳米管开关元件电气地定位在源极,漏极和栅极之一及其对应的端子之间。 源极,漏极和栅极中的其他物体直接连接到其相应的端子。 纳米管开关元件响应于在两个控制端子处的电刺激而机电可偏转以产生源极,漏极和栅极之一与其相应的端子之间的非易失性开放和非易失性闭合电连通状态之一。 在一个实施例中,当创建非易失性打开状态时,两个控制端中的一个具有用于与纳米管开关元件接触的电介质表面。 在一个实施例中,源极,漏极和栅极可以在从地面到电源电压的任何电压电平下被激励,并且其中两个控制端子被激励在从接地到比电源电压更大幅度的开关阈值电压的任何电压电平。 在一个实施例中,纳米管开关元件包括由纳米制成的制品,其位于两个控制端子之间。 在一个实施例中,两个控制端子中的一个是用于静电拉伸纳米管制品的释放电极,与源极,漏极和栅极之一不接触,以形成非易失性的打开状态。 在一个实施例中,两个控制端子中的另一个是用于静电拉动纳米管制品与源极,漏极和栅极之一接触的设置电极,以便形成非易失性闭合状态。
    • 10. 发明授权
    • Sensor platform using a horizontally oriented nanotube element
    • 传感器平台采用水平取向的纳米管元件
    • US08310015B2
    • 2012-11-13
    • US11333426
    • 2006-01-17
    • Brent M. SegalThomas RueckesBernhard VogeliDarren K. BrockVenkatachalam C. JaiprakashClaude L. Bertin
    • Brent M. SegalThomas RueckesBernhard VogeliDarren K. BrockVenkatachalam C. JaiprakashClaude L. Bertin
    • H01L29/82
    • G01N27/4146B82Y15/00G11C13/025Y10S977/902Y10S977/904Y10S977/92Y10S977/921Y10S977/922Y10S977/924Y10T29/43Y10T29/49082
    • Sensor platforms and methods of making them are described, and include platforms having horizontally oriented sensor elements comprising nanotubes or other nanostructures, such as nanowires. Under certain embodiments, a sensor element has an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes, and, under certain embodiments, it comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing a collection of nanotubes on the structure; defining a pattern within the nanotube collection; removing part of the collection so that a patterned collection remains to form a sensor element; and providing circuitry to electrically sense the sensor's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes. Under certain embodiments, sensor material is derivatized or functionalized after provision on the structure or after patterning. Under certain embodiments, a large-scale array includes multiple sensors.
    • 描述了传感器平台及其制造方法,并且包括具有包括纳米管或其他纳米结构(例如纳米线)的水平定向的传感器元件的平台。 在某些实施方案中,传感器元件对分析物具有亲和力。 在某些实施方案中,这种传感器元件包括一个或多个原始纳米管,并且在某些实施方案中,其包含衍生化或官能化的纳米管。 在某些实施例中,通过提供支撑结构来制造传感器; 在结构上提供纳米管的集合; 定义纳米管集合内的图案; 去除部分集合,使得图案化的集合保持形成传感器元件; 以及提供用于电感测传感器电特性的电路。 在某些实施方案中,传感器元件包括预衍生的或预功能化的纳米管。 在某些实施方案中,传感器材料在提供在结构上或在图案化之后被衍生化或官能化。 在某些实施例中,大规模阵列包括多个传感器。