会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Adjustment of thick film resistor (TCR) by laser annealing
    • 通过激光退火调整厚膜电阻(TCR)
    • US4703557A
    • 1987-11-03
    • US916414
    • 1986-10-07
    • John F. NesporRobert F. GornickRichard Y. Kwor
    • John F. NesporRobert F. GornickRichard Y. Kwor
    • H01C17/232H01C17/26H01C17/06
    • H01C17/232H01C17/265Y10T29/49099
    • The adjustment of the temperature coefficient of resistance (TCR) of a thick film resistor by laser annealing is disclosed. The thick film resistor is fired for a controlled time and temperature sufficient to burn off the organic material in the resistive paint, and to provide an initial adjustment of the (TCR), but prior to obtaining the desired (TCR) range. The resistor is then laser annealed to controllably adjust the (TCR) of the resistor within the desired (TCR) range. The fixture used to hold the substrate during laser annealing is preferably controllably heated to avoid thermal shock to the resistor during laser annealing. A microprocessor is preferably used to monitor the (TCR) during the laser annealing process. At least one of the laser scan speed, laser beam diameter, laser beam power, and number of annealing passes are used to controllably adjust the resistor (TCR) to within the desired (TCR) range.
    • 公开了通过激光退火调整厚膜电阻器的电阻温度系数(TCR)。 烧制厚膜电阻器的时间和温度足以烧掉电阻涂料中的有机材料,并提供(TCR)的初始调整,但在获得所需的(TCR)范围之前。 然后对电阻器进行激光退火,以可控制地将电阻器的(TCR)调节到期望的(TCR)范围内。 用于在激光退火期间保持基板的固定装置优选地被可控地加热以避免在激光退火期间对电阻器的热冲击。 优选使用微处理器来监测激光退火过程中的(TCR)。 使用激光扫描速度,激光束直径,激光束功率和退火次数中的至少一个来可控地将电阻器(TCR)调节到期望的(TCR)范围内。
    • 10. 发明授权
    • Controlled temperature coefficient thin-film circuit element
    • 受控温度系数薄膜电路元件
    • US4464646A
    • 1984-08-07
    • US281169
    • 1981-07-07
    • Kurt BurgerHeinz FriedrichHeiko GrunerKarl-Otto LinnErich Zabler
    • Kurt BurgerHeinz FriedrichHeiko GrunerKarl-Otto LinnErich Zabler
    • H01C17/06G01K7/18H01C7/06H01C17/232H01L27/01H01C1/12
    • G01K7/183H01C17/232H01C7/06
    • To form a temperature sensor, for example suitable in an automotive vehicle, to determine ambient temperatures, or to provide a temperature compensated thin-film circuit, for example for incorporation with an oscillator circuit, two stable thin-film layers are applied to a non-conductive substrate, the layers being capable of being etched. The overall temperature coefficient of resistance can be matched to a predetermined value by selective interconnection of at least two thin-film resistance elements formed by the thin films, of which one thin film resistance element for example comprises a nickel layer over a tantalum base, with a predetermined temperature coefficient of resistance, the other resistance element merely being the tantalum layer with essentially zero temperature coefficient of resistance, the overall temperature coefficient of resistance of the combination being determined by adjustment of the relative resistance values after measurement of the temperature coefficient of resistance of the nickel-tantalum layer to determine its actual temperature coefficient so that, in spite of tolerances in the manufacture of the thin films, interchangeable elements of highly accurate overall resistance and temperature coefficient of resistance values can be obtained.
    • 为了形成例如适合于机动车辆的温度传感器,以确定环境温度,或者提供温度补偿薄膜电路,例如用于与振荡器电路结合,将两个稳定的薄膜层施加到非 - 导电衬底,这些层能够被蚀刻。 电阻的整体温度系数可以通过由薄膜形成的至少两个薄膜电阻元件的选择性互连来匹配,其中一个薄膜电阻元件例如包括在钽基底上的镍层, 电阻的预定温度系数,另一个电阻元件仅仅是具有基本上为零的电阻温度系数的钽层,组合的电阻的总体温度系数是通过测量电阻温度系数后的相对电阻值的调整来确定的 以确定其实际温度系数,使得尽管制造薄膜的公差尽可能地获得高度精确的总电阻和电阻温度系数的可互换元件。