会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 烟草制品及加工 / 无烟烟草 / 从烟草克隆细胞色素P450基因

从烟草克隆细胞色素P450基因

阅读:1042发布:2020-09-10

IPRDB可以提供从烟草克隆细胞色素P450基因专利检索,专利查询,专利分析的服务。并且本发明涉及p450酶和在烟草中编码p450酶的核酸序列,以及使用这些酶和序列来改变植物表型的方法。,下面是从烟草克隆细胞色素P450基因专利的具体信息内容。

1.一种从烟草中分离的核酸分子,其中所述核酸分子是SEQ.ID.No.:181。

2.一种从烟草中分离的核酸分子,其中所述核酸分子与SEQ.ID.No.:181具有至少81%的序列同一性。

3.一种从烟草中分离的核酸分子,其中所述核酸分子与SEQ.ID.No.:181具有至少91%的序列同一性。

4.一种从烟草中分离的蛋白质,其中所述蛋白质包括SEQ.ID.No.:182。

5.一种从烟草中分离的蛋白质,其中所述蛋白质与SEQ.ID.No.:182具有至少80%的序列同一性。

6.一种从烟草中分离的蛋白质,其中所述蛋白质与SEQ.ID.No.:182具有至少90%的序列同一性。

7.一种转基因植物,其中所述转基因植物含有权利要求1、2或3所述的核酸分子。

8.如权利要求7所述的转基因植物,其特征在于,所述植物是烟草植物。

9.一种产生转基因植物的方法,其中所述方法包括以下步骤;

(i)将权利要求1、2或3所述的核酸分子与在所述植物中具有功能的启动子操作性相连以产生植物转化载体;

(ii)用步骤(i)的所述植物转化载体转化所述植物;

(iii)选择用所述转化载体转化的植物细胞;和(iv)从所述转化的植物细胞再生转化植物。

10.如权利要求9所述的方法,其特征在于,所述植物的降烟碱水平降低。

11.如权利要求9所述的方法,其特征在于,所述核酸分子处于反义方向。

12.如权利要求9所述的方法,其特征在于,所述核酸分子处于有义方向。

13.如权利要求9所述的方法,其特征在于,所述核酸分子处于RNA干扰方向。

14.如权利要求9所述的方法,其特征在于,所述核酸分子表达为双链RNA分子。

15.如权利要求9所述的方法,其特征在于,所述转基因植物是烟草植物。

16.一种选择含有核酸分子的植物的方法,其特征在于,分析所述植物中是否存在权利要求1、2或3所述的核酸序列。

17.如权利要求16所述的选择植物的方法,其特征在于,通过DNA杂交法分析所述植物。

18.如权利要求17所述的选择植物的方法,其特征在于,所述DNA杂交是Southern印迹分析。

19.如权利要求17所述的选择植物的方法,其特征在于,所述DNA杂交是Northern印迹分析。

20.如权利要求16所述的选择植物的方法,其特征在于,通过PCR检测法分析所述植物。

21.如权利要求16所述的方法,其特征在于,所述植物是烟草植物。

22.一种增加或降低植物中降烟碱水平的方法,其中所述方法包括以下步骤;

(i)将权利要求1、2或3所述的核酸分子与在所述植物中具有功能的启动子操作性相连以产生植物转化载体;

(ii)用步骤(i)所述植物转化载体转化所述植物;

(iii)选择用所述转化载体转化的植物细胞;和(iv)从所述转化的植物细胞再生转化植物。

23.如权利要求22所述的方法,其特征在于,所述核酸分子处于反义方向。

24.如权利要求22所述的方法,其特征在于,所述核酸分子处于有义方向。

25.如权利要求22所述的方法,其特征在于,所述核酸分子处于RNA干扰方向。

26.如权利要求22所述的方法,其特征在于,所述核酸分子表达为双链RNA分子。

27.如权利要求22所述的方法,其特征在于,所述转基因植物是烟草植物。

28.一种降烟碱水平的量降低的烟草产品,所述烟草产品含有取自权利要求7所述植物的烟草。

29.如权利要求27所述的烟草产品,其特征在于,所述烟草产品选自卷烟、雪茄、烟斗丝、鼻烟、口嚼烟、混合有所述烟草产品的产品和它们的混合物。

30.如权利要求28所述的烟草产品,其特征在于,所述降烟碱的水平降低约5-10%。

31.如权利要求28所述的烟草产品,其特征在于,所述降烟碱的水平降低约10-20%。

32.如权利要求28所述的烟草产品,其特征在于,所述降烟碱的水平降低约20-30%。

33.如权利要求28所述的烟草产品,其特征在于,所述降烟碱的水平降低超过约30%。

34.一种降烟碱水平的量降低的烟叶,所述烟叶包括取自权利要求7所述植物的烟叶。

35.如权利要求30所述的烟叶,其特征在于,用所述烟叶形成一种烟草产品,而该烟草产品选自卷烟、雪茄、烟斗丝、鼻烟、口嚼烟、混合有所述烟草产品的产品和它们的混合物。

36.一种使用权利要求1、2或3所述分离的核酸分子从植物中分离基因的方法。

说明书全文

从烟草克隆细胞色素P450基因

[0001] 此案是申请日为2004年10月15日、中国申请号为200480030387.X、发明名称为“从烟草克隆细胞色素P450基因”的发明申请的分案申请。
[0002] 本发明涉及在烟草(Nicotiana)植物中编码细胞色素P450酶(下文称为P450和P450酶)的核酸序列和使用那些核酸序列来改变植物表型的方法。

背景技术

[0003] 细胞色素P450催化各种化学上不同的底物的酶反应,包括内源性和异源底物的氧化、过氧化和还原性代谢。在植物中,p450参与包括植物产物合成在内的生化途径,所
述产物例如是苯丙素(phenylpropanoids)、生物碱、萜类、脂质、生氰糖苷(cyanogenic
glycoside)和葡糖异硫氰酸盐(glucosinolates)(Chappel,Annu.Rev.Plant Physiol.
Plant Mol.Biol.198,49:311-343)。细胞色素p450也称为血红素-硫醇盐蛋白
(heme-thiolate protein),通常用作多组分电子转移链(称为含p450的单加氧酶系统)
中的末端氧化酶。所催化的特定反应包括脱甲基化、羟基化、环氧化、N-氧化、磺基氧化
(sulfooxidation)、N-、S-和O-脱烷基化、脱硫作用、脱氨基作用和偶氮基、硝基和N-氧化物基团的还原。
[0004] 烟草植物p450酶的各种作用涉及产生各种植物代谢物,例如苯丙素、生物碱、萜类、脂质、生氰糖苷、葡糖异硫氰酸盐和其它化学物质的宿主。近年来,人们开始了解一些p450酶影响植物中植物代谢物的组成。例如,长期以来人们希望通过育种改变植物的所选
脂肪酸的特性来改善特定植物的风味和香味;然而涉及控制这些叶子组成的水平的机理知
之甚少。下调与改变脂肪酸有关的p450酶可有助于积累提供更适宜的叶子表型质量的所
需脂肪酸。p450酶的功能及其在植物组成中广泛的作用仍有待发现。例如,特定类型的
p450酶发现可催化脂肪酸分解为挥发性C6-和C9-醛和醇,而主要是这些物质导致水果和
蔬菜具有“新鲜翠绿”的气味。可改变其它作为新目标的p450酶的水平,通过改变烟草叶
子中的脂质组成和相关的降解代谢物来提高叶子组成的质量。叶子中的几种这些成分受老
化的影响,而老化刺激叶子质量特性的成熟。其它人也报道p450酶在改变涉及植物病原体
相互作用和疾病抗性的脂肪酸中起作用。
[0005] 在其它例子中,已提示p450酶涉及生物碱的生物合成。降烟碱是在烟草(Nicotiana tabaceum)中发现的少量生物碱。推测它是这样产生的:p450介导的尼古丁脱
甲基化,然后在N位酰化和亚硝基化,从而产生一系列N-酰基降烟碱(N-acylnonicotine)
和N-亚硝基降烟碱。推测的p450脱甲基酶催化的N-脱甲基化被认为是烟草中降烟碱生
物合成的主要来源。尽管认为该酶是微粒体酶,但是迄今为止未能成功地纯化尼古丁脱甲
基化酶,也未能分离到有关基因。
[0006] 此外,有假说认为(但未证实)p450酶的活性受遗传控制并且也强烈地受环境因素的影响。例如,当植物达到成熟阶段后,认为烟草中尼古丁的脱甲基化作用大大增加。另外,有假说认为(还未证实)脱甲基化基因含有当存在时能抑制RNA翻译的转座元件。
[0007] 在本发明之前,p450酶形式的多样性、其结构和功能的不同使得对烟草p450酶的研究十分困难。此外,对p450酶的克隆至少部分由于这些膜定位的蛋白通常存在量低且经
常在纯化中不稳定而受阻。因此,需要在植物中鉴定p450酶和与那些p450酶相关的核酸
序列。特别是,在烟草中仅有少许细胞色素p450蛋白已见报道。本文所述的发明发现了许
多细胞色素p450片段,这些片段基于它们的序列同一性而对应于几组p450种类。
[0008] 概述
[0009] 本发明针对植物p450酶。本发明还涉及来自烟草的植物p450酶。本发明也涉及其表达由乙烯和/和植物老化诱导的植物中的p450酶。本发明还涉及植物中具有酶活性
的核酸序列,例如可分类为氧化酶、脱甲基酶等和其它酶,以及使用那些序列来使这些酶的表达降低和沉默和过度表达。本发明也涉及在含有较高降烟碱水平的植物而非显示较低降
烟碱水平的植物中发现的p450酶。
[0010] 本发明一方面涉及以下所示的核酸序列:SEQ.ID.NO.1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、
69、71、73、75、77、79、81、83、85、87、89、91、95、97、99、101、103、105、107、109、111、113、115、
117、119、121、123、125、127、129、131、133、135、137、139、143、145、147、149、151、153、155、
157、159、161、163、165、167、169、171、173、175、177、179、181、183、185、187、189、191、193、
195、197、199、201、203、205、207、209、211、213、215、217、219、221、223、225、227、229、231、
233、235、237、239、241、243、245、247、249、251、253、255、257、259、261、263、265、267、269、
271、273、275、277、279、281、283、285、287、289、291、293、295和297。
[0011] 在第2个相关的方面,根据它们在细胞色素p450基序GXRXCX(G/A)后的第一核酸到终止密码子的对应区域的同一性,对那些含有大于75%的核酸序列同一性的片段进行分
组。代表性的核酸组和各自的种类示于表I。
[0012] 在第3方面,本发明涉及如以下所示的氨基酸序列:SEQ.ID.NO.2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、
64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、96、98、100、102、104、106、108、110、
112、114、116、118、120、122、124、126、128、130、132、134、136、138、140、144、146、148、150、
152、154、156、158、160、162、164、166、168、170、172、174、176、178、180、182、184、186、188、
190、192、194、196、198、200、202、204、206、208、210、212、214、216、218、220、222、224、226、
228、230、232、234、236、238、240、242、244、246、248、250、252、254、256、258、260、262、264、
266、268、270、272、274、276、278、280、282、284、286、288、290、292、294、296和298。
[0013] 在第4个相关的方面,根据它们在细胞色素p450基序GXRXCX(G/A)后的第一核酸到终止密码子的对应区域的同一性,对那些含有大于71%的核酸序列同一性的片段进行分
组。代表性的氨基酸组和各自的种类示于表II。
[0014] 在第5个方面,本发明涉及如以下所示全长基因的氨基酸序列:SEQ.ID.NO.150、152、154、156、158、160、162、164、166、168、170、172、174、176、178、180、182、184、186、188、
190、192、194、196、198、200、202、204、206、208、210、212、214、216、218、220、222、224、226、
228、230、232、234、236、238、240、242、244、246、248、250、252、254、256、258、260、262、264、
266、268、270、272、274、276、278、280、282、284、286、288、290、292、294、296和298。
[0015] 在第6个相关的方面,根据彼此的同一性对那些含有大于85%和更高的氨基酸序列同一性的全长基因进行分组。代表性的氨基酸组和各自的种类示于表III。
[0016] 在第7个方面,本发明涉及如SEQ.ID.NO.299-357所示片段的氨基酸序列。
[0017] 在第8个相关的方面,根据它们在第一细胞色素p450结构域UXXRXXZ到第3细胞色素结构域GXRXO的对应区域的互相同一性,对那些含有大于90%和更高的氨基酸序列同
一性的片段进行分组,其中U是E或K,X是任何氨基酸,Z是R、T、S或M。代表性的氨基酸
组和各自的种类示于表IV。
[0018] 在第9个相关的方面,p450酶在烟草植物中的减少或消除或过度表达可使用RNA病毒系统瞬时实现。
[0019] 评价得到的转化或感染的植物的表型改变,包括(但不限于)使用本领域普通技术人员常规可用的技术来分析内源性p450RNA转录物、p450表达肽和植物代谢物的浓度。
[0020] 在第10个方面,本发明也涉及产生具有改变的p450酶活性水平的转基因烟草谱系。根据本发明,这些转基因谱系含有有效地特定酶表达减少、沉默或增加,从而在烟草中导致表型效应的核酸序列。这种核酸序列包括SEQ.ID.NO.1、3、5、7、9、11、13、15、17、19、21、
23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、
73、75、77、79、81、83、85、87、89、91、95、97、99、101、103、105、107、109、111、113、115、117、
119、121、123、125、127、129、131、133、135、137、139、143、145、147、149、151、153、155、157、
159、161、163、165、167、169、171、173、175、177、179、181、183、185、187、189、191、193、195、
197、199、201、203、205、207、209、211、213、215、217、219、221、223、225、227、229、231、233、
235、237、239、241、243、245、247、249、251、253、255、257、259、261、263、265、267、269、271、
273、275、277、279、281、283、285、287、289、291、293、295和297。
[0021] 在本发明非常重要的第11方面,与对照植物相比,含有本发明核酸的植物栽培品系在使用全长基因或其片段的下调能力或使用全长基因或其片段的过度表达能力上具有
改变的代谢物特性。
[0022] 在本发明的第12方面,含有本发明核酸的植物栽培品系具有对特定外源性化学物质或植物害虫耐受的用途,所述植物使用全长基因或其片段以更改来源于植物或植物以
外的代谢物的生物合成或降解。这种核酸序列包括SEQ.ID.NO.1、3、5、7、9、11、13、15、17、
19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、
69、71、73、75、77、79、81、83、85、87、89、91、95、97、99、101、103、105、107、109、111、113、115、
117、119、121、123、125、127、129、131、133、135、137、139、143、145、147、149、151、153、155、
157、159、161、163、165、167、169、171、173、175、177、179、181、183、185、187、189、191、193、
195、197、199、201、203、205、207、209、211、213、215、217、219、221、223、225、227、229、231、
233、235、237、239、241、243、245、247、249、251、253、255、257、259、261、263、265、267、269、
271、273、275、277、279、281、283、285、287、289、291、293、295和297。
[0023] 在第13个方面,本发明涉及筛选含有与所述核酸序列具有实质核酸同一性的基因的植物,优选烟草。使用本发明有利于鉴定和选择含有精确的或实质同一性的核酸序列
的植物,其中这种植物是传统或转基因品种的育种程序、诱变程序或天然存在的不同植物
种群的一部分。可使用核酸探针结合核酸检测方法,包括(但不限于)核酸杂交和PCR分
析,通过评价植物的核酸物质来筛选实质核酸同一性的植物。核酸探针可由对应于以下SEQ ID的所述核酸序列或其片段构成:SEQ ID 1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、
31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、
81、83、85、87、89、91、95、97、99、101、103、105、107、109、111、113、115、117、119、121、123、
125、127、129、131、133、135、137、139、143、145、147、149、151、153、155、157、159、161、163、
165、167、169、171、173、175、177、179、181、183、185、187、189、191、193、195、197、199、201、
203、205、207、209、211、213、215、217、219、221、223、225、227、229、231、233、235、237、239、
241、243、245、247、249、251、253、255、257、259、261、263、265、267、269、271、273、275、277、
279、281、283、285、287、289、291、293、295和297。
[0024] 在第14个方面,本发明涉及鉴定与所述核酸序列具有实质性氨基酸同一性的植物基因,优选烟草。可使用核酸探针结合核酸检测方法,包括(但不限于)核酸杂交和PCR
分析,通过筛选植物cDNA文库来鉴定植物基因,包括cDNA和基因组克隆,优选烟草的cDNA
和基因组克隆。核酸探针可由对应于以下SEQ ID的核酸序列或其片段构成:1、3、5、7、9、
11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、
61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、95、97、99、101、103、105、107、109、
111、113、115、117、119、121、123、125、127、129、131、133、135、137、139、143、145和147。
[0025] 在其它第15个方面,可使用针对部分或全部所述氨基酸序列的抗体来筛选表达肽的cDNA表达文库。这种氨基酸序列包括SEQ ID 2、4、8、9、10、12、14、16、18、20、22、24、
26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、
76、78、80、82、84、86、88、90、92、96、98、100、102、104、106、108、110、112、114、116、118、120、
122、124、126、128、130、132、134、136、138、140、144、146、148。
[0026] 在第16个重要的方面,本发明也涉及产生过度表达p450酶活性水平的转基因烟草谱系。根据本发明,这些转基因谱系包括编码全长基因的氨基酸序列的所有核酸序
列,所述基因有效地增加特定酶的表达从而导致烟草中的表型效应。这种氨基酸序列包
括SEQ.ID.150、152、154、156、158、160、162、164、166、168、170、172、174、176、178、180、182、
184、186、188、190、192、194、196、198、200、202、204、206、208、210、212、214、216、218、220、
222、224、226、228、230、232、234、236、238、240、242、244、246、248、250、252、254、256、258、
260、262、264、266、268、270、272、274、276、278、280、282、284、286、288、290、292、294、296和
298。
[0027] 也提供了含有降烟碱含量降低的烟叶(叶片和/或茎)的烟草产品。该烟草产品包括烟草(含有叶片和/或茎的烟叶),该烟草来自含有本文所述序列或消除或抑制了编
码烟草特异性亚硝基胺的基因的植物。与用未消除或抑制编码烟草特异性亚硝基胺的基因
的烟草植物制备的烟草产品相比,消除或抑制编码烟草特异性亚硝基胺的基因有效地降低
了烟草产品中约5-10%、或者约10-20%、或者约20-30%、或者30%以上的烟草特异性亚硝基
胺。本文使用的烟草产品可包括香烟、雪茄、烟丝、鼻烟、口嚼烟(chewing tobacco)、混合了烟草产品的产品和它们的混合物。
[0028] 本申请涉及
[0029] 1.一种从烟草中分离的核酸分子,其中所述核酸分子是SEQ.ID.No.:181。
[0030] 2.一种从烟草中分离的核酸分子,其中所述核酸分子与SEQ.ID.No.:181具有至少81%的序列同一性。
[0031] 3.一种从烟草中分离的核酸分子,其中所述核酸分子与SEQ.ID.No.:181具有至少91%的序列同一性。
[0032] 4.一种从烟草中分离的蛋白质,其中所述蛋白质包括SEQ.ID.No.:182。
[0033] 5.一种从烟草中分离的蛋白质,其中所述蛋白质与SEQ.ID.No.:182具有至少80%的序列同一性。
[0034] 6.一种从烟草中分离的蛋白质,其中所述蛋白质与SEQ.ID.No.:182具有至少90%的序列同一性。
[0035] 7.一种转基因植物,其中所述转基因植物含有项1、2或3所述的核酸分子。
[0036] 8.如项7所述的转基因植物,其特征在于,所述植物是烟草植物。
[0037] 9.一种产生转基因植物的方法,其中所述方法包括以下步骤;
[0038] (i)将项1、2或3所述的核酸分子与在所述植物中具有功能的启动子操作性相连以产生植物转化载体;
[0039] (ii)用步骤(i)的所述植物转化载体转化所述植物;
[0040] (iii)选择用所述转化载体转化的植物细胞;和
[0041] (iv)从所述转化的植物细胞再生转化植物。
[0042] 10.如项9所述的方法,其特征在于,所述植物的降烟碱水平降低。
[0043] 11.如项9所述的方法,其特征在于,所述核酸分子处于反义方向。
[0044] 12.如项9所述的方法,其特征在于,所述核酸分子处于有义方向。
[0045] 13.如项9所述的方法,其特征在于,所述核酸分子处于RNA干扰方向。
[0046] 14.如项9所述的方法,其特征在于,所述核酸分子表达为双链RNA分子。
[0047] 15.如项9所述的方法,其特征在于,所述转基因植物是烟草植物。
[0048] 16.一种选择含有核酸分子的植物的方法,其特征在于,分析所述植物中是否存在项1、2或3所述的核酸序列。
[0049] 17.如项16所述的选择植物的方法,其特征在于,通过DNA杂交法分析所述植物。
[0050] 18.如项17所述的选择植物的方法,其特征在于,所述DNA杂交是Southern印迹分析。
[0051] 19.如项17所述的选择植物的方法,其特征在于,所述DNA杂交是Northern印迹分析。
[0052] 20.如项16所述的选择植物的方法,其特征在于,通过PCR检测法分析所述植物。
[0053] 21.如项16所述的方法,其特征在于,所述植物是烟草植物。
[0054] 22.一种增加或降低植物中降烟碱水平的方法,其中所述方法包括以下步骤;
[0055] (i)将项1、2或3所述的核酸分子与在所述植物中具有功能的启动子操作性相连以产生植物转化载体;
[0056] (ii)用步骤(i)所述植物转化载体转化所述植物;
[0057] (iii)选择用所述转化载体转化的植物细胞;和
[0058] (iv)从所述转化的植物细胞再生转化植物。
[0059] 23.如项22所述的方法,其特征在于,所述核酸分子处于反义方向。
[0060] 24.如项22所述的方法,其特征在于,所述核酸分子处于有义方向。
[0061] 25.如项22所述的方法,其特征在于,所述核酸分子处于RNA干扰方向。
[0062] 26.如项22所述的方法,其特征在于,所述核酸分子表达为双链RNA分子。
[0063] 27.如项22所述的方法,其特征在于,所述转基因植物是烟草植物。
[0064] 28.一种降烟碱水平的量降低的烟草产品,所述烟草产品含有取自项7所述植物的烟草。
[0065] 29.如项27所述的烟草产品,其特征在于,所述烟草产品选自卷烟、雪茄、烟斗丝、鼻烟、口嚼烟、混合有所述烟草产品的产品和它们的混合物。
[0066] 30.如项28所述的烟草产品,其特征在于,所述降烟碱的水平降低约5-10%。
[0067] 31.如项28所述的烟草产品,其特征在于,所述降烟碱的水平降低约10-20%。
[0068] 32.如项28所述的烟草产品,其特征在于,所述降烟碱的水平降低约20-30%。
[0069] 33.如项28所述的烟草产品,其特征在于,所述降烟碱的水平降低超过约30%。
[0070] 34.一种降烟碱水平的量降低的烟叶,所述烟叶包括取自项7所述植物的烟叶。
[0071] 35.如项30所述的烟叶,其特征在于,用所述烟叶形成一种烟草产品,而该烟草产品选自卷烟、雪茄、烟斗丝、鼻烟、口嚼烟、混合有所述烟草产品的产品和它们的混合物。
[0072] 36.一种使用项1、2或3所述分离的核酸分子从植物中分离基因的方法。
[0073] 附图简述
[0074] 图1显示核酸SEQ.ID.No.:1和氨基酸SEQ.ID.No.:2。
[0075] 图2显示核酸SEQ.ID.No.:3和氨基酸SEQ.ID.No.:4。
[0076] 图3显示核酸SEQ.ID.No.:5和氨基酸SEQ.ID.No.:6。
[0077] 图4显示核酸SEQ.ID.No.:7和氨基酸SEQ.ID.No.:8。
[0078] 图5显示核酸SEQ.ID.No.:9和氨基酸SEQ.ID.No.:10。
[0079] 图6显示核酸SEQ.ID.No.:11和氨基酸SEQ.ID.No.:12。
[0080] 图7显示核酸SEQ.ID.No.:13和氨基酸SEQ.ID.No.:14。
[0081] 图8显示核酸SEQ.ID.No.:15和氨基酸SEQ.ID.No.:16。
[0082] 图9显示核酸SEQ.ID.No.:17和氨基酸SEQ.ID.No.:18。
[0083] 图10显示核酸SEQ.ID.No.:19和氨基酸SEQ.ID.No.:20。
[0084] 图11显示核酸SEQ.ID.No.:21和氨基酸SEQ.ID.No.:22。
[0085] 图12显示核酸SEQ.ID.No.:23和氨基酸SEQ.ID.No.:24。
[0086] 图13显示核酸SEQ.ID.No.:25和氨基酸SEQ.ID.No.:26。
[0087] 图14显示核酸SEQ.ID.No.:27和氨基酸SEQ.ID.No.:28。
[0088] 图15显示核酸SEQ.ID.No.:29和氨基酸SEQ.ID.No.30。
[0089] 图16显示核酸SEQ.ID.No.:31和氨基酸SEQ.ID.No.:32。
[0090] 图17显示核酸SEQ.ID.No.:33和氨基酸SEQ.ID.No.:34。
[0091] 图18显示核酸SEQ.ID.No.:35和氨基酸SEQ.ID.No.:36。
[0092] 图19显示核酸SEQ.ID.No.:37和氨基酸SEQ.ID.No.:38。
[0093] 图20显示核酸SEQ.ID.No.:39和氨基酸SEQ.ID.No.:40。
[0094] 图21显示核酸SEQ.ID.No.:41和氨基酸SEQ.ID.No.:42。
[0095] 图22显示核酸SEQ.ID.No.:43和氨基酸SEQ.ID.No.:44。
[0096] 图23显示核酸SEQ.ID.No.:45和氨基酸SEQ.ID.No.:46。
[0097] 图24显示核酸SEQ.ID.No.:47和氨基酸SEQ.ID.No.:48。
[0098] 图25显示核酸SEQ.ID.No.:49和氨基酸SEQ.ID.No.:50。
[0099] 图26显示核酸SEQ.ID.No.:51和氨基酸SEQ.ID.No.:52。
[0100] 图27显示核酸SEQ.ID.No.:53和氨基酸SEQ.ID.No.:54。
[0101] 图28显示核酸SEQ.ID.No.:55和氨基酸SEQ.ID.No.:56。
[0102] 图29显示核酸SEQ.ID.No.:57和氨基酸SEQ.ID.No.:58。
[0103] 图30显示核酸SEQ.ID.No.:59和氨基酸SEQ.ID.No.:60。
[0104] 图31显示核酸SEQ.ID.No.:61和氨基酸SEQ.ID.No.:62。
[0105] 图32显示核酸SEQ.ID.No.:63和氨基酸SEQ.ID.No.:64。
[0106] 图33显示核酸SEQ.ID.No.:65和氨基酸SEQ.ID.No.:66。
[0107] 图34显示核酸SEQ.ID.No.:67和氨基酸SEQ.ID.No.:68。
[0108] 图35显示核酸SEQ.ID.No.:69和氨基酸SEQ.ID.No.:70。
[0109] 图36显示核酸SEQ.ID.No.:71和氨基酸SEQ.ID.No.:72。
[0110] 图37显示核酸SEQ.ID.No.:73和氨基酸SEQ.ID.No.:74。
[0111] 图38显示核酸SEQ.ID.No.:75和氨基酸SEQ.ID.No.:76。
[0112] 图39显示核酸SEQ.ID.No.:77和氨基酸SEQ.ID.No.:78。
[0113] 图40显示核酸SEQ.ID.No.:79和氨基酸SEQ.ID.No.:80。
[0114] 图41显示核酸SEQ.ID.No.:81和氨基酸SEQ.ID.No.:82。
[0115] 图42显示核酸SEQ.ID.No.:83和氨基酸SEQ.ID.No.:84。
[0116] 图43显示核酸SEQ.ID.No.:85和氨基酸SEQ.ID.No.:86。
[0117] 图44显示核酸SEQ.ID.No.:87和氨基酸SEQ.ID.No.:88。
[0118] 图45显示核酸SEQ.ID.No.:89和氨基酸SEQ.ID.No.:90。
[0119] 图46显示核酸SEQ.ID.No.:91和氨基酸SEQ.ID.No.:92。
[0120] 图47显示核酸SEQ.ID.No.:93和氨基酸SEQ.ID.No.:94。
[0121] 图48显示核酸SEQ.ID.No.:95和氨基酸SEQ.ID.No.:96。
[0122] 图49显示核酸SEQ.ID.No.:97和氨基酸SEQ.ID.No.:98。
[0123] 图50显示核酸SEQ.ID.No.:99和氨基酸SEQ.ID.No.:100。
[0124] 图51显示核酸SEQ.ID.No.:101和氨基酸SEQ.ID.No.:102。
[0125] 图52显示核酸SEQ.ID.No.:103和氨基酸SEQ.ID.No.:104。
[0126] 图53显示核酸SEQ.ID.No.:105和氨基酸SEQ.ID.No.:106。
[0127] 图54显示核酸SEQ.ID.No.:107和氨基酸SEQ.ID.No.:108。
[0128] 图55显示核酸SEQ.ID.No.:109和氨基酸SEQ.ID.No.:110。
[0129] 图56显示核酸SEQ.ID.No.:111和氨基酸SEQ.ID.No.:112。
[0130] 图57显示核酸SEQ.ID.No.:113和氨基酸SEQ.ID.No.:114。
[0131] 图58显示核酸SEQ.ID.No.:115和氨基酸SEQ.ID.No.:116。
[0132] 图59显示核酸SEQ.ID.No.:117和氨基酸SEQ.ID.No.:118。
[0133] 图60显示核酸SEQ.ID.No.:119和氨基酸SEQ.ID.No.:120。
[0134] 图61显示核酸SEQ.ID.No.:121和氨基酸SEQ.ID.No.:122。
[0135] 图62显示核酸SEQ.ID.No.:123和氨基酸SEQ.ID.No.:124。
[0136] 图63显示核酸SEQ.ID.No.:125和氨基酸SEQ.ID.No.:126。
[0137] 图64显示核酸SEQ.ID.No.:127和氨基酸SEQ.ID.No.:128。
[0138] 图65显示核酸SEQ.ID.No.:129和氨基酸SEQ.ID.No.:130。
[0139] 图66显示核酸SEQ.ID.No.:131和氨基酸SEQ.ID.No.:132。
[0140] 图67显示核酸SEQ.ID.No.:133和氨基酸SEQ.ID.No.:134。
[0141] 图68显示核酸SEQ.ID.No.:135和氨基酸SEQ.ID.No.:136。
[0142] 图69显示核酸SEQ.ID.No.:137和氨基酸SEQ.ID.No.:138。
[0143] 图70显示核酸SEQ.ID.No.:139和氨基酸SEQ.ID.No.:140。
[0144] 图71显示核酸SEQ.ID.No.:141和氨基酸SEQ.ID.No.:142。
[0145] 图72显示核酸SEQ.ID.No.:143和氨基酸SEQ.ID.No.:144。
[0146] 图73显示核酸SEQ.ID.No.:145和氨基酸SEQ.ID.No.:146。
[0147] 图74显示核酸SEQ.ID.No.:147和氨基酸SEQ.ID.No.:148。
[0148] 图75显示核酸SEQ.ID.No.:149和氨基酸SEQ.ID.No.:150。
[0149] 图76显示核酸SEQ.ID.No.:151和氨基酸SEQ.ID.No.:152。
[0150] 图77显示核酸SEQ.ID.No.:153和氨基酸SEQ.ID.No.:154。
[0151] 图78显示核酸SEQ.ID.No.:155和氨基酸SEQ.ID.No.:156。
[0152] 图79显示核酸SEQ.ID.No.:157和氨基酸SEQ.ID.No.:158。
[0153] 图80显示核酸SEQ.ID.No.:159和氨基酸SEQ.ID.No.:160。
[0154] 图81显示核酸SEQ.ID.No.:161和氨基酸SEQ.ID.No.:162。
[0155] 图82显示核酸SEQ.ID.No.:163和氨基酸SEQ.ID.No.:164。
[0156] 图83显示核酸SEQ.ID.No.:165和氨基酸SEQ.ID.No.:166。
[0157] 图84显示核酸SEQ.ID.No.:167和氨基酸SEQ.ID.No.:168。
[0158] 图85显示核酸SEQ.ID.No.:169和氨基酸SEQ.ID.No.:170。
[0159] 图86显示核酸SEQ.ID.No.:171和氨基酸SEQ.ID.No.:172。
[0160] 图87显示核酸SEQ.ID.No.:173和氨基酸SEQ.ID.No.:174。
[0161] 图88显示核酸SEQ.ID.No.:175和氨基酸SEQ.ID.No.:176。
[0162] 图89显示核酸SEQ.ID.No.:177和氨基酸SEQ.ID.No.:178。
[0163] 图90显示核酸SEQ.ID.No.:179和氨基酸SEQ.ID.No.:180。
[0164] 图91显示核酸SEQ.ID.No.:181和氨基酸SEQ.ID.No.:182。
[0165] 图92显示核酸SEQ.ID.No.:183和氨基酸SEQ.ID.No.:184。
[0166] 图93显示核酸SEQ.ID.No.:185和氨基酸SEQ.ID.No.:186。
[0167] 图94显示核酸SEQ.ID.No.:187和氨基酸SEQ.ID.No.:188。
[0168] 图95显示核酸SEQ.ID.No.:189和氨基酸SEQ.ID.No.:190。
[0169] 图96显示核酸SEQ.ID.No.:191和氨基酸SEQ.ID.No.:192。
[0170] 图97显示核酸SEQ.ID.No.:193和氨基酸SEQ.ID.No.:194。
[0171] 图98显示核酸SEQ.ID.No.:195和氨基酸SEQ.ID.No.:196。
[0172] 图99显示核酸SEQ.ID.No.:197和氨基酸SEQ.ID.No.:198。
[0173] 图100显示核酸SEQ.ID.No.:199和氨基酸SEQ.ID.No.:200。
[0174] 图101显示核酸SEQ.ID.No.:201和氨基酸SEQ.ID.No.:202。
[0175] 图102显示核酸SEQ.ID.No.:203和氨基酸SEQ.ID.No.:204。
[0176] 图103显示核酸SEQ.ID.No.:205和氨基酸SEQ.ID.No.:206。
[0177] 图104显示核酸SEQ.ID.No.:207和氨基酸SEQ.ID.No.:208。
[0178] 图105显示核酸SEQ.ID.No.:209和氨基酸SEQ.ID.No.:210。
[0179] 图106显示核酸SEQ.ID.No.:211和氨基酸SEQ.ID.No.:212。
[0180] 图107显示核酸SEQ.ID.No.:213和氨基酸SEQ.ID.No.:214。
[0181] 图108显示核酸SEQ.ID.No.:215和氨基酸SEQ.ID.No.:216。
[0182] 图109显示核酸SEQ.ID.No.:217和氨基酸SEQ.ID.No.:218。
[0183] 图110显示核酸SEQ.ID.No.:219和氨基酸SEQ.ID.No.:220。
[0184] 图111显示核酸SEQ.ID.No.:221和氨基酸SEQ.ID.No.:222。
[0185] 图112显示核酸SEQ.ID.No.:223和氨基酸SEQ.ID.No.:224。
[0186] 图113显示核酸SEQ.ID.No.:225和氨基酸SEQ.ID.No.:226。
[0187] 图114显示核酸SEQ.ID.No.:227和氨基酸SEQ.ID.No.:228。
[0188] 图115显示核酸SEQ.ID.No.:229和氨基酸SEQ.ID.No.:230。
[0189] 图116显示核酸SEQ.ID.No.:231和氨基酸SEQ.ID.No.:232。
[0190] 图117显示核酸SEQ.ID.No.:233和氨基酸SEQ.ID.No.:234。
[0191] 图118显示核酸SEQ.ID.No.:235和氨基酸SEQ.ID.No.:236。
[0192] 图119显示核酸SEQ.ID.No.:237和氨基酸SEQ.ID.No.:238。
[0193] 图120显示核酸SEQ.ID.No.:239和氨基酸SEQ.ID.No.:240。
[0194] 图121显示核酸SEQ.ID.No.:241和氨基酸SEQ.ID.No.:242。
[0195] 图122显示核酸SEQ.ID.No.:243和氨基酸SEQ.ID.No.:244。
[0196] 图123显示核酸SEQ.ID.No.:245和氨基酸SEQ.ID.No.:246。
[0197] 图124显示核酸SEQ.ID.No.:247和氨基酸SEQ.ID.No.:248。
[0198] 图125显示核酸SEQ.ID.No.:249和氨基酸SEQ.ID.No.:250。
[0199] 图126显示核酸SEQ.ID.No.:251和氨基酸SEQ.ID.No.:252。
[0200] 图127显示核酸SEQ.ID.No.:253和氨基酸SEQ.ID.No.:254。
[0201] 图128显示核酸SEQ.ID.No.:255和氨基酸SEQ.ID.No.:256。
[0202] 图129显示核酸SEQ.ID.No.:257和氨基酸SEQ.ID.No.:258。
[0203] 图130显示核酸SEQ.ID.No.:259和氨基酸SEQ.ID.No.:260。
[0204] 图131显示核酸SEQ.ID.No.:261和氨基酸SEQ.ID.No.:262。
[0205] 图132显示核酸SEQ.ID.No.:263和氨基酸SEQ.ID.No.:264。
[0206] 图133显示核酸SEQ.ID.No.:265和氨基酸SEQ.ID.No.:266。
[0207] 图134显示核酸SEQ.ID.No.:267和氨基酸SEQ.ID.No.:268。
[0208] 图135显示核酸SEQ.ID.No.:269和氨基酸SEQ.ID.No.:270。
[0209] 图136显示核酸SEQ.ID.No.:271和氨基酸SEQ.ID.No.:272。
[0210] 图137显示核酸SEQ.ID.No.:273和氨基酸SEQ.ID.No.:274。
[0211] 图138显示核酸SEQ.ID.No.:275和氨基酸SEQ.ID.No.:276。
[0212] 图139显示核酸SEQ.ID.No.:277和氨基酸SEQ.ID.No.:278。
[0213] 图140显示核酸SEQ.ID.No.:279和氨基酸SEQ.ID.No.:280。
[0214] 图141显示核酸SEQ.ID.No.:281和氨基酸SEQ.ID.No.:282。
[0215] 图142显示核酸SEQ.ID.No.:283和氨基酸SEQ.ID.No.:284。
[0216] 图143显示核酸SEQ.ID.No.:285和氨基酸SEQ.ID.No.:286。
[0217] 图144显示核酸SEQ.ID.No.:287和氨基酸SEQ.ID.No.:288。
[0218] 图145显示核酸SEQ.ID.No.:289和氨基酸SEQ.ID.No.:290。
[0219] 图146显示核酸SEQ.ID.No.:291和氨基酸SEQ.ID.No.:292。
[0220] 图147显示核酸SEQ.ID.No.:293和氨基酸SEQ.ID.No.:294。
[0221] 图148显示核酸SEQ.ID.No.:295和氨基酸SEQ.ID.No.:296。
[0222] 图149显示核酸SEQ.ID.No.:297和氨基酸SEQ.ID.No.:298。
[0223] 图150显示序列组群的比较。
[0224] 图151显示序列组的比较。
[0225] 图152A-152E显示了全长克隆的对比。
[0226] 图153显示通过PCR克隆细胞色素p450cDNA片段的方法。
[0227] 发明详述
[0228] 定义
[0229] 除非另有定义,本文使用的所有技术和科技术语均与本发明所属领域的普通技术人员通常理解的具有相同的意义。Singleton等,(1994)《微生物和分子生物学字
典》(Dictionary of Microbiology and Molecular Biology),第二版,John Wiley and Sons(纽约)为技术人员提供了许多关于本发明所用术语的通用字典。本文所提及的所有
专利和出版物均纳入本文作为参考。出于本发明的目的,下列术语如下定义。
[0230] “酶活性”包括脱甲基化、羟基化、环氧化、N-氧化、磺基氧化、N-、S-和O-脱烷基化、脱硫作用、脱氨基作用和偶氮基、硝基和N-氧化物基团的还原。术语“核酸”指单链或双链形式的,或有义或反义的脱氧核糖核酸或核糖核酸聚合物,并且除非另有限制,该术语包括能以类似于天然存在核苷酸的方式与核酸杂交的天然核苷酸的已知类似物。除非另有指出,特定的核酸序列包括其互补序列。
[0231] 术语“可操作性连接”、“可操作性结合”和“以可操作性顺序”指核酸表达控制序列(例如启动子、信号序列或转录因子结合位点的阵列)和第二核酸序列之间的功能性连接,其中表达控制序列影响对应于第二序列的核酸的转录和/或翻译。
[0232] 当术语“重组体”用于指细胞时,它指该细胞复制异源核酸,表达所述核酸或表达异源核酸编码的肽、异源肽或蛋白质。重组细胞可以有义或反义形式表达在细胞的天然形式(非重组)中未发现的基因或基因片段。重组细胞也可表达在细胞的天然形式中发现的
基因,但其中该基因通过人工方式被改变并重新引入细胞。
[0233] “结构基因”是含有编码蛋白质、多肽或其部分的DNA片段的基因的一部分,并且不包括启动转录的5’序列。或者结构基因可编码不可翻译的产物。结构基因可是在细胞中正常发现的基因,或者它是引入的而非在细胞或细胞位置中正常发现的基因,在这种情
况下称为“异源基因”。异源基因可全部或部分来源于本领域已知的任何来源,包括细菌
基因组或附加体、真核生物的、核的或质粒DNA、cDNA、病毒DNA或化学合成的DNA。结构基因可含有一种或多种修饰,这些修饰可影响生物活性或其特性、表达产物的生物活性或化
学结构、表达速率或表达控制的方式。这种修饰包括(但不限于)一个或多个核苷酸的突
变、插入、删除和取代。结构基因可构成不间断的编码序列或可包括一个或多个与合适的
剪接接头结合的内含子。结构基因可以是可翻译或不可翻译的,包括反义方向(antisense orientation)。结构基因可以是来源于多种来源和多种基因序列的复合物(天然存在的或
合成的,其中合成的指化学合成的DNA)。
[0234] “来源于”用来指从某种来源(化学和/或生物的)取得、获得、接受得、追溯、复制或传下的。可通过对原始来源的化学或生物学操作(包括,但不限于取代、添加、插入、删除、提取、分离、突变和复制)产生衍生物。
[0235] 涉及DNA序列的术语“化学合成的”指部分核苷酸组分在体外装配。可使用已良好建立的方法(Caruthers,《DNA和RNA测序的方法》(Methodology of DNA and RNA
Secquencing),(1983),Weissman编,Praeger Publishers,New York,第1章)实现DNA的手工化学合成;可使用许多市售可得的机器的一种进行自动化学合成。
[0236] 可通过以下方法进行序列的最佳对比:Smith和Waterman(Adv.Appl.Math.2:482(1981))的局部同源性算法、Needleman和Wunsch(J.Mol.Biol.48:443(1970))
的同源性算法、Pearson和Lipman(Proc.Natl.Acad.Sci.(U.S.A.)85:2444(1988))的相似
性检索方法、这些算法的计算机化的工具(Wisconsin Genetics软件包中的GAP、BESTFIT、FASTA和TFASTA,Genetics Computer Group,575 Science Dr.,Madison,Wis.)或通过检验。
[0237] 可从几种来源(包括生物信息国家中心(NCBI,Bethesda,Md.)和因特网)获得NCBI基础局部序列比对检索工具(BLAST)(Altschul等,1990)与序列分析程序blast、
blastn、blastx、tblastn和tblastx联合使用。该工具可在htp://www.ncbi.nlm.nih.gov/BLAST/获得。如何使用该程序检测序列同一性描述于http://www.ncbi.nlm.nih.gov/
BLAST/blast help.html。
[0238] 本文使用并应用于氨基酸序列的术语“实质氨基酸同一性”或“实质氨基酸序列同一性”表示多肽的一种特性,其中与参考组在所翻译肽的细胞色素p450基序GXRXCX(G/A)后的第一氨基酸到终止密码子的对应区域相比,所述肽含有至少70%的序列同一性、优选
80%氨基酸序列同一性、更优选90%氨基酸序列同一性、最优选至少99-100%序列同一性的
序列。
[0239] 本文使用并应用于核酸序列的术语“实质核酸同一性”或“实质核酸序列同一性”表示多核苷酸序列的一种特性,其中与参考组在所翻译肽的细胞色素p450基序GXRXCX(G/A)后的第一核酸到终止密码子的对应区域相比,所述多核苷酸含有至少75%的序列同一
性、优选81%序列同一性、更优选91%序列同一性、最优选至少99-100%序列同一性的序列。
[0240] 核苷酸序列实质相同的另一个指标是两个分子在严格条件下是否可杂交。严格条件视序列而定,在不同情况下是不同的。严格条件一般选择比给定离子强度和pH时特定序
列的热解链温度(Tm)低约5-20℃,通常是约10-15℃。Tm是在给定离子强度和pH时50%
靶序列与匹配的探针杂交的温度。严格条件通常是盐浓度为约0.02摩尔,pH是7,温度是
至少约60℃。例如,在标准的Southern杂交方法中,严格条件包括于42℃在6×SSC中初
次洗涤,然后于至少约55℃(通常是约60℃,更常见是约65℃)在0.2×SSC进行一次或多
次额外洗涤。
[0241] 出于本发明的目的,当核苷酸序列编码的多肽和/或蛋白质实质性相同时,核苷酸序列也实质性相同。因此,当一条核酸序列与第二条核酸序列编码的多肽实质性相同
时,这两条核酸序列是实质性相同的,即使由于遗传密码所允许的简并性造成它们在严格
条件下不会杂交(对密码子简并性和遗传密码的解释参见Darnell等,(1990)《分子生物
学》(Molecular Cell Biology),第二版,Scientific American Books W.H.Freeman and Company,New York)。可通过许多本领域熟知的方式,例如蛋白质样品的聚丙烯酰胺凝胶电泳,然后基于染色通过目测来表征蛋白质纯度或均一性。出于特定的目的,可能需要高分辨率并可利用HPLC或类似的装置。
[0242] 本文使用的术语“载体”指将DNA片段转移入细胞的核酸分子。载体可由于复制DNA并可在宿主细胞中独立地复制。术语“运载体”有时可与“载体”互换使用。本文使用的术语“表达载体”指重组DNA分子,该分子含有所需的编码序列和用于在特定宿主生物体中表达操作性相连的编码序列所需合适的核酸序列。通常,原核生物中表达所需的核酸序
列通常含有启动子、操纵子(任选)与核糖体结合位点,以及其它序列。已知真核细胞可利
用启动子、增强子以及终止和聚腺苷酸化信号。
[0243] 为再生完全经遗传工程改造的具有根的植物,可在植物细胞中插入核酸,例如通过诸如体内接种的任何技术或通过任何已知的体外组织培养技术来产生可再生为完整植
物的转化植物细胞。因此,例如可通过病原性或非病原性根瘤土壤杆菌(A.tumefacien)的
体外接种来插入植物细胞。也可使用其它这样的组织培养技术。
[0244] “植物组织”包括分化或未分化的植物组织,包括,但不限于根、芽、叶、花粉、种子、肿瘤组织以及培养物中细胞的各种形式,例如单细胞、原生质体、胚和愈伤组织。植物组织可在植物中(in planta)或器官中,组织或细胞培养物中。
[0245] 本文使用的“植物细胞”包括植物中的植物细胞和培养物中的植物细胞和原生质体。
[0246] “cDNA”或“互补DNA”一般指核苷酸序列与RNA分子互补的单链DNA分子。cDNA是通过逆转录酶在RNA模板作用形成的。
[0247] 获得核酸序列的方案
[0248] 根据本发明,从转化体和非转化体烟草谱系的烟草组织中提取RNA。提取的RNA然后用于产生cDNA。然后使用两种方案产生本发明的核酸序列。
[0249] 在第一方案中,从植物组织中提取富含polyA的RNA并通过逆转录PCR制备cDNA。然后使用简并引物加上寡聚d(T)反向引物,用单链cDNA产生p450特异性PCR群。以高度
保守的p450基序为基础设计引物。特定的简并引物的例子示于图1。进一步分析含有合适
大小插入物的质粒的序列片段。这些插入物的大小一般是约300-800个核苷酸,视采用何
种引物而定。
[0250] 在第二方案中,首先构建cDNA文库。使用简并引物加上在质粒上作为反向引物的T7引物,使用质粒中的cDNA产生p450特异的PCR群。如第一方案中一样,进一步分析含有
合适大小插入物的质粒的序列片段。
[0251] 已知产生高水平降烟碱的烟草植物谱系(转化体)和降烟碱水平检测不到的植物谱系可用作起始材料。
[0252] 然后可从植物上取下叶子并用乙烯处理以激活本文所定义的p450酶活性。示于本领域已知的技术提取总RNA。然后使用如图153所述的寡聚d(T)引物经PCR(RT-PCR)产
生cDNA片段。然后可完全地构建本文实施例所述的cDNA文库。
[0253] p450型酶的保守区域可用作简并引物(图75)的模板。可通过PCR使用简并引物扩增p450特异性条带。表示p450样酶的区带可通过DNA测序鉴定。可使用鉴定合适的候
选对象的BLAST检索、算法或其它工具来表征PCR片段的特性。
[0254] 已鉴定片段的序列信息可用于开发PCR引物。这些引物与cDNA文库中的质粒引物联合用于克隆全长p450基因。进行大规模Sourthern反向分析来检测所有获得的片段
克隆以及在一些情况中全长克隆的差别表达。在本发明的这个方面,为筛选所有克隆的插
入物,可用不同组织的标记的总cDNA作为探针来与克隆的DNA片段杂交,进行大规模反向
Sourthern测定。
[0255] 也用非放射性和放射性(P32)Northern印迹测定来鉴定克隆p450片段和全长克隆。
[0256] 通过衍生它们的氨基酸序列与选择抗原性和对其它克隆独特的肽区域来制造针对几种全长克隆的肽特异性抗体。制造了针对偶联于运载体蛋白的合成肽的家兔抗体。使
用这些抗体对植物组织进行Western印迹分析或其它免疫学方法。
[0257] 可使用病毒诱导的基因沉默技术(VIGS,Baulcombe,Current Opinions in Plant Biology,1999,2:109-113)检测以上鉴定的核酸序列。
[0258] 通过衍生它们的氨基酸序列与选择可能的抗原性和对其它克隆独特的肽区域来制造针对几种全长克隆的肽特异性抗体。制造了针对偶联于运载体蛋白的合成肽的家兔抗
体。使用这些抗体进行Western印迹分析。
[0259] 在本发明的另一方面,使用干扰RNA(RNAi)技术在本发明的烟草植物中进一步鉴定细胞色素p450酶活性。描述该技术的以下参考文献纳入本文作为参考,Smith等,
Nature,2000,407:319-320;Fire 等,Nature,1998,391:306-311;Waterhouse 等,PNAS,
1998,95:13959-13964;Stalberg 等,Plant Molecular Biology,1993,23:671-683;
Baulcombe,Current Opinions in Plant Biology,1999,2:109-113和Brigneti等,EMBO Journal,1998,17(22):6739-6746。可使用RNAi技术、反义技术或所述的各种其它方法来转化植物。
[0260] 有几种技术将外来遗传物质引入植物细胞并获得稳定地维持和表达所引入基因的植物。这种技术包括加速包裹在微粒上的遗传物质进入细胞(授予Cornell的美国专利
4,945,050和授予DowElanco的美国专利5,141,131)。可使用土壤杆菌技术来转化植物,
参见授予University of Toledo的美国专利5,177,010;授予Texas A & M的5,104,310;
Schilperoot的欧洲专利申请0131624B1、欧洲专利申请120516、159418B1、欧洲专利申
请120516、159418B1和176,112;授予Schilperoot美国专利5,149,645;5,469,976;
5,464,763;4,940,838和4,693,976;MaxPlanck的欧洲专利申请116718、290799、320500;
Japan Nicotiana的欧洲专利申请604662和627752;Ciba Geigy的欧洲专利申请0267159、
0292435和美国专利5,231,019;授予Calgene的美国专利5,463,174和4,762,785;授予
Agracetus的美国专利5,004,863和5,159,135。其它转化技术包括whiskers技术,参见,
例如授予Zeneca的美国专利5,302,523和5,464,765。电穿孔技术也用于转化植物,参见,
Boyce Thompson Institute的WO 87/06614、Dekalb的5,472,869和5,384,253;PGS的
WO9209696和WO9321335。所有这些转化专利和出版物引作参考。除了许多转化植物的技
术以外,与外来基因接触的组织的类型也可变。这种组织包括,但不限于胚胎发生组织、I和II型愈伤组织、下胚轴、分生组织等。使用技术人员已知的合适的技术几乎可转化所有
分化过程中的植物组织。
[0261] 引入植物的外来遗传物质可包含选择标记。具体的标记可由技术人员判断,但以下选择标记可与任何其它可用作选择标记的本文未列出的基因一起使用。这种选择
标记包括,但不限于:编码抗生素卡那霉素、新霉素和G418抗性的转座子Tn5(Aph II)
的氨基糖苷磷酸转移酶基因,以及编码对N-膦酰甲基甘氨酸、潮霉素、氨甲喋呤、草铵膦
(phosphinothricin)(bar)、咪唑啉酮、磺酰脲和三唑并嘧啶除草剂,例如chlorosulfuron、溴苯腈、茅草枯等具抗性或耐受性的那些基因。
[0262] 除了选择标记以外,可能需要使用报道基因。在一些例子中,可使用报道基因而无需选择标记。报道基因是通常不存在于或不表达于受者生物体或组织中的基因。报道基因通常编码提供一些表型改变或酶性能的蛋白质。这种基因的例子见纳入本文作为参考的
K.Weising等,Ann.Rev.Genetics,22,421(1988)。优选的报道基因包括,但不限于葡糖醛酸酶(GUS)基因和GFP基因。
[0263] 一旦引入植物组织后,可通过任何本领域已知的方法来评价结构基因的表达,可以mRNA转录、蛋白质合成或发生沉默基因的量来检测表达(参见纳入本文作为参考的美国
专利号5,583,021)。用于体外培养植物细胞和在许多情况中,用于再生完整植物的技术是
已知的(欧洲申请号88810309.0)。本领域的技术人员已知将引入的表达复合物变为商业
有用品种的方法。
[0264] 一旦获得表达所需水平的p450酶的植物细胞,可使用本领域熟知的方法和技术再生植物组织和完整的植物。再生的植物可通过常规方法繁殖,引入的基因可通过常规植
物育种技术转入其它品系或品种。
[0265] 以下实施例描述了实施本发明的方法并且应理解为是说明性的,而非基于此来限制本发明在权利要求中所定义的范围。
实施例
[0266] 实施例1植物组织的发育和乙烯处理
[0267] 植物生长
[0268] 将植物种在盆中,在温室中生长4周。将4周龄的幼苗移到单独的盆中,温室中生长2个月。生长过程中,每天给植物浇水2次,水中含有150ppm的NPK肥料。将展开的绿
叶与植物分离,以进行下面所述的乙烯处理。
[0269] 细胞系78379
[0270] 由肯塔基大学发放的烟草品系78379用作植物材料的来源,它是一种白肋(burley)烟草品系。用本领域种植烟草的标准方法培养100株植物,移植,并且用不同的数字(1-100)给它们贴注标签。用推荐的方法施肥和进行田间管理。
[0271] 100株植物中的3/4将20-100%的烟碱转化为降烟碱。100株中的1/4将小于5%的烟碱转化为降烟碱。植株87转化率最低(2%),而植株21的转化率为100%。将转化率
小于3%的植株分类为非转化株。对植株87和21自花授粉的种子以及杂交(21 x 87和
87 x 21)的种子进行遗传差异和表型差异的研究。来自植株21自花授粉种子的植物是转
化株,99%的来自植株87自花授粉种子的植物是非转化株。剩余1%的来自植株87自花授
粉种子的植物有较低的转化率(5-15%)。杂交种均为转化株。
[0272] 细胞系4407
[0273] 烟草品系4407用作植物材料来源,它是一种白肋品系。选择均一的并且具代表性的植物(100)并贴上标签。在这100株植物中,97株是非转化株,3株是转化株。植株56的转化率最低(1.2%),植株58的转化水平最高(96%)。将这两株植物进行自花授粉和杂交。
[0274] 来自植株58自花授粉种子的植株产生3∶1的分离比(转化株∶非转化株=3∶1)。植株58-33和58-25分别被鉴定为纯合转化株和非转化株植物品系。植株58-33
下一代后裔中的分析确证了该植株的稳定转化率。
[0275] 细胞系PBLB01
[0276] PBLB01是由ProfiGen,Inc.研究开发的一种白肋品系,用作植物材料的来源。从PBLB01的第一代(foundation)种子中选择转化株植株。
[0277] 乙烯处理方法
[0278] 将绿色叶片从温室生长2-3个月的植物分离,喷施0.3%的乙烯溶液(商品名Ethephon(Rhone-Poulenc))。将每片经喷施的叶子悬挂在配有加湿器的养护架(curing
rack)上,覆盖塑料膜。在处理期间,用乙烯溶液定期喷施样品叶片。乙烯处理后约24-48小时,收集叶子提取RNA。取同一组样品的另外一份(sup-sample)用于代谢成分分析以测定叶片代谢物的浓度以及感兴趣的更具体的成分如多种生物碱的分析。
[0279] 例如,可如下进行生物碱分析。样品(0.1克)和0.5毫升2N NaOH以及含有喹啉(作为内标)和甲基叔丁基乙醚的5毫升提取液在150rpm振荡。在配有FID检测器的HP6890GC上分析样品。250℃的温度用于检测器和上样器(injector)。使用含有与5%苯酚和95%
甲基硅酮(methyl silicon)交联的熔融硅石的HP柱(30m-0.32nm-1m),温度梯度为每分钟
10℃,110-185℃。该柱在100℃工作,用氦气作为运载气体,流速为1.7cm3min-1,分流比为
40∶1,上样体积为2·1。
[0280] 实施例2:分离RNA
[0281] 对于RNA的提取,如上所述用乙烯处理2月龄温室植物的中等大小的叶片。0和24-48小时的样品用于RNA提取。在有些情况下,从打顶(flower-head removal)后10天
的植物取处于衰老过程的叶片样品。这些样品也用于提取。用Rneasy Plant (
Qiagen,Inc.,Valencia,California)按照生产商的方法分离总RNA。
[0282] 用DEPC处理过的研钵和杵在液氮中将组织样品研磨为细粉。将约100毫克磨碎的组织转移到灭菌的1.5毫升eppendorf管中。将样品管置于液氮中,直到收集完所有样
品。然后,将试剂盒中提供的450μl RLT缓冲液加入各管中。剧烈振荡样品,然后在56℃
TM
温育3分钟。将裂解物加在放于2毫升收集管中的QIAshredder 旋转柱上,最大速度离心
2分钟。收集流出液,加0.5体积的乙醇到澄清的裂解液中。充分混合样品,转移到放在2
毫升收集管中的小旋转柱中。10,000rpm离心样品1分钟。然后,吸取700μl RW1缓冲液
到 柱上,10,000rpm离心1分钟。吸取RPE缓冲液到置于新收集管中的
柱上,10,000rpm离心1分钟。再将RPE缓冲液加到 旋转柱上,以最大速度离心2
分钟以使膜干燥。为了除掉残留的乙醇,将膜置于一空收集管上,再以最大速度离心1分
钟。将 柱转移到一个新的1.5毫升收集管中,将40μl不含RNA酶的水直接吸到
膜上。该最终洗脱物在10,000rpm离心1分钟。用变性甲醛凝胶和分光光度计分
析总RNA的质量和数量。
[0283] 按照生产商的方法用OligotexTMpoly A+RNA纯化试剂盒(Qiagen Inc.)分离Poly(A)RNA。使用溶于最大为250μl体积的约200μg总RNA。将250μl OBB缓冲液和
TM
15μl Oligotex 悬浮液加到250μl总RNA中。通过吸打使这些物质彻底混合,在加热器
(heating block)上70℃保温3分钟。然后,将样品置于室温约20分钟。最大速度离心2
分钟得到oligotex:mRNA复合物团块。从微离心管中除去全部上清液,仅剩约50μl。再用
OBB缓冲液处理样品。通过涡旋将oligotex:mRNA团块重新悬浮在400μl OW2缓冲液中。
将该混合物转移到置于新管中的小旋转柱上,以最大速度离心1分钟。将旋转柱移到新管
中,再往该柱中加入400μl OW2缓冲液。然后,以最大速度离心该管。将旋转柱转移到最
终的1.5毫升微量离心管中。用60μl热的(70℃)OEB缓冲液洗脱样品。用变性甲醛凝胶
和分光光度计分析Poly A产物。
[0284] 实施例3:反转录-PCR
[0285] 按 照 生 产 商 的 方 法 用 SuperScript 反 转 录 酶(Invitrogen,Carlsbad,California)制备第一链cDNA。富集了poly A+RNA的寡聚dT引
物混合物由少于5μg的总RNA、1μl 10mM dNTP混合物、1μl Oligo d(T)12-18(0.5μg/
μl)和至多10μl的经DEPC处理的水组成。各样品在65℃温育5分钟,然后置于冰上至少1
分钟。按顺序加入下列各组分,以制备反应混合物:2μl 10X RT缓冲液、4μl 25mM MgCl2、
2μl0.1M DTT和1μl去除RNA酶的重组RNA酶抑制剂(Rnase OUT Recombinant RNase
Inhibitor)。吸取9μl反应混合物到各RNA/引物混合物,轻柔混合。42℃温育2分钟,在
TM
各管中加入1μl Super Script II RT,42℃温育50分钟。在70℃终止反应15分钟,冰
上冷却。离心收集样品,在各管中加入1μl RNase H,37℃温育20分钟。用200pmoles正
向引物(如图75所示的变性引物,SEQ ID NO.149-156)和100pmoles反向引物(18碱基的
寡聚d(T),接一个随机碱基)进行第二次PCR。
[0286] 反应条件是94℃2分钟;然后进行40个循环的PCR:94℃1分钟,45-60℃2分钟,72℃3分钟;最后72℃再延伸额外的10分钟。
[0287] 用1%的琼脂糖凝胶电泳分析10微升的扩增样品。将大小正确的条带从琼脂糖凝胶上纯化出来。
[0288] 实施例4:PCR片段群体的产生
[0289] 按照生产商的方法将实施例3得到的PCR片段连接到pGEM-T Easy Vector(Promega,Madison,Wisconsin)中。用连接产物转化JM109感受态细胞,涂在LB培养基平板上,
进行蓝/白选择。选择克隆,置于96孔板上在1.2毫升LB培养基中37℃生长过夜。对于
所有选出的集落保留冻存管。用Beckman′s Biomeck 2000小制备机器人技术(miniprep
robotics)以Wizard SVMiniprep试剂盒(Promega)从平板上纯化质粒。用100μl水洗
脱质粒DNA,存贮于96孔板中。用EcoRl消化质粒,并用1%琼脂糖凝胶分析以确证DNA的
量和插入片段的大小。用CEQ 2000测序仪(Beckman,Fullerton,California)测序含有
400-600bp插入片段的质粒。用BLAST搜索将测得的序列与Genbank数据库进行比对。鉴
定与p450相关的片段并进一步分析。或者,将p450片段从差减文库中分离出来。如上所
述分析这些片段。
[0290] 实施例5:CDNA文库的构建
[0291] 如下所述从乙烯处理的叶片中制备总RNA以构建cDNA文库。首先,用改良的酸酚和氯仿提取方法从乙烯处理的烟草品系58-33叶片中提取总RNA。改良的方法是用1
克组织进行研磨,随后在5毫升加入了5毫升苯酚(pH5.5)和5毫升氯仿的提取缓冲液
(100mMTris-HCl,pH 8.5;200mM NaCl;l0mM EDTA;0.5%SDS)中涡旋。将提取的样品离心,保留上清。该提取步骤再重复2-3次直到上清变得澄清。加入约5毫升氯仿以除去痕量的
苯酚。加入3倍体积的ETOH和1/10体积的3M NaOAc(pH5.2)以从混合的上清组分中沉淀
RNA,在-20℃存贮1小时。转移到Corex玻璃容器中以后,在4℃9,000RPM离心RNA组分
45分钟。离心下来的团块用70%乙醇洗涤,4℃9,000RPM离心5分钟。团块干燥以后,将
RNA团块溶解在0.5毫升不含Rnase的水中。RNA团块溶解在0.5毫升不含Rnase的水中。
分别用变性甲醛和分光光度计分析总RNA的质量和数量。
[0292] 以下述步骤用Oligo(dT)纤维素方法(Invitrogen)和微离心旋转柱(Invitrogen)从得到的总RNA中分离poly A+RNA。约20mg总RNA进行两次纯化以获得高
质量的poly A+RNA。用变性甲醛和随后的已知全长基因的RT-PCR(确保高质量的mRNA)来
分析PolyA+RNA产物。
[0293] 接着,以poly A+RNA作模板用cDNA合成试剂盒、 合成试剂盒和 III金克隆试剂盒(gold cloning kit)(Stratagene,La
Jolla,California)来产生cDNA文库。其中的方法按照生产商规定的步骤来进行。用约
6 7
8μg polyA+RNA来构建cDNA文库。初级文库的分析显示约有2.5x10-lx10pfu。用IPTG
和X-gal进行了互补分析,以检测文库的质量背景,其中重组噬菌斑的表达高出背景反应
100倍以上。
[0294] 用随机PCR对文库进行的更为定量的分析表明,插入的cDNA的平均大小约为1.2kb。该方法采用了如下所述的两步法PCR。对于第一步,反向引物的设计是基于从p450
片段获得的初级序列信息。设计的反向引物和T3(正向)引物用于从cDNA文库中扩增相
应的基因。PCR反应物进行琼脂糖凝胶电泳,切割高分子量的相应条带,纯化、克隆并测序。
在第二步中,用根据p450的5′UTR或翻译起始区域设计的新引物作为正向引物,和反向引
物一起(根据p450的3′UTR设计)用于下一步的PCR以获得全长p450克隆。
[0295] 如实施例3所述(反向引物除外)从构建的cDNA文库中用PCR扩增获得p450片段。用位于质粒上cDNA插入片段下游(见图75)的T7引物作为反向引物。如实施例4所
述分离、克隆和测序PCR片段。
[0296] 从构建的cDNA文库中用PCR方法分离全长p450基因。用基因特异性反向引物(根据p450片段的下游序列设计)和正向引物(位于文库质粒上的T3)来克隆全长基因。分离、克隆并测序PCR片段。如果需要,可进行第二步PCR。在第二步PCR中,用根据克隆的p450
的5′UTR设计的新正向引物和根据p450的3′UTR设计的反向引物来进行下一步的PCR
反应,以获得全长p450克隆。然后对克隆测序。
[0297] 实施例6:克隆片段的鉴定-反向SOUTHERN印迹分析
[0298] 在以上实施例中鉴定的所有p450克隆上进行非放射性大规模反向southern印迹试验以检测差异性表达。观察到不同p450基因簇之间的表达水平非常不同。在高水平表
达的克隆上又进行了实时检测。
[0299] 非放射性southern印迹方法按如下所述进行。
[0300] 1)如实施例2所述用Qiagen Rnaeasy试剂盒从乙烯处理和未处理的转化株(58-33)和非转化株(58-25)叶片提取总RNA。
[0301] 2)用生物素加尾标记从上述步骤产生的富含poly A+的RNA中衍生的单链cDNA来制备探针。该标记的单链cDNA是如实施例3所述用转化株和非转化株的总
RNA(Invitrogen)进行RT-PCR产生的,但用了生物素化的寡聚dT作为引物(Promega)。这
些用作探针与克隆的DNA杂交。
[0302] 3)用限制性内切酶EcoRl消化质粒DNA,进行琼脂糖凝胶电泳。将这些凝胶同时干燥并转到两个尼龙膜上 一个膜与转化株探针杂交,另
一个膜与非转化株探针杂交。在杂交之前将膜进行紫外线交联(自动交联设备,
254nm,Stratagene,Stratalinker)。
[0303] 或者,用位于p-GEM两臂上的序列,T3和SP6作为引物从各质粒中PCR扩增插入片段。PCR产物在96孔的即时(Ready-to-run)琼脂糖凝胶上电泳以进行分析。经确证的
插入片段点到两个尼龙膜上。一个膜与转化株探针杂交,另一个膜与非转化株探针杂交。
[0304] 4)按生产商的说明书将这些膜杂交并洗涤,其中对洗涤的严格性进行了改变TM
(Enzo MaxSence 试剂盒,Enzo Diagnostics,Inc,Farmingdale,NY)。膜与杂交缓冲液(2x
SSC缓冲的甲酰胺,含有去垢剂和杂交增强剂)在42℃预杂交30分钟,与10μl变性的探
针42℃杂交过夜。然后室温用1X杂交洗涤缓冲液洗涤杂交膜一次,10分钟;68℃洗涤15
分钟,4次。然后可以对杂交膜进行检测。
[0305] 5)按生产商提供的检测方法(Enzo Diagnostics,Inc.),经洗涤的膜用碱性磷酸酶标记,然后用NBT/BCIP颜色检测方法进行检测。用1X封闭液室温封闭杂交膜1小时,用
1X检测试剂洗涤10分钟(3次),用1X预显影反应缓冲液洗涤5分钟(2次),然后在显影液中显影直到出现点状印迹。所有的试剂都由生产商提供(Enzo Diagnostics,Inc)。此外,
TM
还用KPL southern杂交和检测试剂盒 按生产商的方法(KPL,Gaithersburg,Maryland)
进行了大规模反向Southern试验。
[0306] 实施例7:克隆的鉴定-NORTHERN印迹分析
[0307] 除Southern印迹分析之外,如Northern印迹分析的实施例所述,一些膜进行了Northern杂交和检测。如下所述,采用Northern杂交检测烟草中差异表达的mRNA。
TM
[0308] 采用随机引发方法从克隆的p450制备探针(Megaprime DNA标记系统,AmershamBiosciences)。
[0309] 混合下述组分:25ng变性的DNA模板;未标记的dTTP、dGTP和dCTP各4μl;5ul32
反应缓冲液;P 标记的dATP和2ul Klenow I;以及水,使反应体系达到50μl。该混合物
在37℃温育1-4小时,然后以2ul0.5M的EDTA终止。使用前,95℃温育5分钟使探针变性。
[0310] 从几对烟草品系经乙烯处理和未经处理的新鲜叶片中制备RNA样品。在有些情况下,使用了富含poly A+的RNA。用DEPC水(5-10μl)使约15ug总RNA或1.8ug mRNA(RNA
或mRNA提取方法如实施例5所述)的体积相同。加入等体积的上样缓冲液(1x MOPS;18.5%
甲醛;50%甲酰胺;4%Ficoll400;溴酚蓝)和0.55μl EtBr(0.5μg/μl)。将样品变性,准
备用电泳分离RNA。
[0311] 将样品用1XMOP缓冲液(0.4M吗啉丙磺酸;0.1M乙酸钠-3x H2O;10mM EDTA;用NaOH调pH至7.2)在甲醛凝胶(1%琼脂糖,1x MOPS,0.6M甲醛)上电泳。用毛细方法在10X
SSC缓冲液(1.5M NaCl;0.15M柠檬酸钠)中将RNA转移到Hybond-N+上(Nylon,Amersham
PharmaciaBiotech)24小时。在杂交前,将有RNA样品的膜紫外交联(自动交联设备,
254nm,Stratagene,Stratalinker)。
[0312] 膜和5-10毫升预杂交缓冲液(5x SSC;50%甲酰胺;5x Denhardt′s-溶液;1%SDS;100g/ml热变性的平端非同源DNA)在42℃预杂交1-4小时。将旧的预杂交缓冲
液弃去,加入新的预杂交缓冲液和探针。杂交在42℃过夜进行。用2 x SSC室温洗涤膜15
分钟,然后用2 x SSC洗涤一次。
[0313] 本发明的一个主要焦点是发现了可被乙烯处理诱导的新基因或者在烟草叶片的质量和成分中起主要作用的新基因。如下表所示,Northern印迹和反向Southern印迹可用
于测定哪些基因受乙烯处理的诱导(相对于不受诱导的植株)。令人感兴趣的是,在转化株和非转化株植株中并非所有的片段都受到相似的影响。对感兴趣的细胞色素p450片段部
分测序以确定它们的结构相关性。该信息被用于后续分离和鉴定感兴趣的全长基因克隆。
[0314]
[0315]
[0316] 用全长克隆在从乙烯处理诱导的转化株和非转化株白肋品系获得的烟草组织上进行Northern分析。目的是鉴定在乙烯诱导的转化株植株中(相对于乙烯诱导的转化株
品系相对于乙烯诱导的非转化株白肋品系)表达有所提高的那些全长基因克隆。用这种
Northern分析方法,可以通过比较转化株和非转化株品系之间叶片组成的生化差异来确定
全长克隆的功能关系。如下表所示,6个克隆在乙烯处理的转化株植物组织中(标记为++和+++)显示出比在乙烯处理的非转化株植物组织中(标记为+)表达显著升高。在未经乙烯处理的转化株和非转化株品系中所有这些克隆显示出很少的表达或不表达。
[0317]全长克隆 转化株 非转化株
D101-BA2 ++ +
D207-AA5 ++ +
D208-AC8 +++ +
D237-AD1 ++ +
D89-AB1 ++ +
D90A-BB3 ++ +
[0318] 实施例8:由克隆的基因编码的p450S的免疫检测
[0319] 选择来自3个p450克隆的长度相应于20-22个氨基酸的肽区域,这些肽区域:1)与其它克隆具有很低的同源性或没有同源性,和2)具有很好的亲水性和抗原性。下面列出了选自各个p450克隆的肽区域的氨基酸序列。将合成的肽与KHL偶联,然后注射到家兔中。
[0320] 第4次注射后2周和4周收集抗血清(Alpha Diagnostic Intl.Inc.SanAntonio,TX)。
[0321] D234-AD1 DIDGSKSKLVKAHRKIDEILG
[0322] D90a-BB3 RDAFREKETFDENDVEELNY
[0323] D89-AB1 FKNNGDEDRHFSQKLGDLADKY
[0324] 用Western印迹分析来检测抗血清对烟草植物组织靶蛋白的交叉活性。
[0325] 从乙烯处理的(0-40小时)转化株和非转化株品系的中等大小的叶片获得蛋白粗提物。按生产商的方法用RC DC蛋白检测试剂盒(BIO-RAD)测定该提取物的蛋白浓度。
[0326] 将2微克蛋白加到各泳道中,用Laemmli SDS-PAGE体系在10%-20%梯度凝胶上分离蛋白。用 半干槽(Semi-Dry cell)(BIO-RAD)将蛋白从凝胶转移到
硝化纤维转移膜(Schleicher & Schuell)上。用ECL AdvanceTM Western印
迹检测试剂盒(Amersham Biosciences)检测和显影p450蛋白。在家兔中制备针对合成的
KLH耦合物的一抗。针对兔IgG的二抗(与过氧化物酶偶联)购自Sigma。一抗和二抗都以
1∶1000稀释液使用。抗体对Western印迹上的一条单一条带显示出很强的反应性,说明
该抗血清对感兴趣的靶肽是单一特异性的。抗血清对与KLH耦合的合成肽也具有交叉反应
性。
[0327] 实施例9:分离的核酸片段的核酸同一性和结构相关性
[0328] 超过100个克隆的p450片段结合Northern印迹分析来测序,以确定它们的结构相关性。所用方法中使用的正向引物基于两个共有的p450基序,这两个基序邻近p450基
因的羧基末端。该正向引物对应于如图1所示的细胞色素p450基序FXPERF或GRRXCP(A/
G)。反向引物使用来自质粒的标准引物(位于pGEMTM质粒的两臂)SP6或T7,或使用多聚A
尾巴。所用方法如下所述。
[0329] 按生产商(Beckman Coulter)的方法用分光光度法评价起始双链DNA的浓度。将模板用水稀释到合适的浓度,95℃2分钟加热变性,然后置于冰上。测序反应液在冰上制
备,其包括0.5-10μl变性DNA模板,2μl 1.6pmole正向引物,8μl DTCS Quick Start
Master Mix,用水调节总体积到20μl。温度循环程序包括以下30个循环:96℃20秒,
50℃20秒,60℃4分钟,然后4℃保温。
[0330] 加入5μl终止缓冲液(等体积的3M NaOAc、100mM EDTA和1μl20mg/ml肝糖)使测序终止。用60μl 95%的冷乙醇沉淀样品,6000g离心6分钟。弃去乙醇。团块用200μl冷的70%乙醇洗涤2次。团块干燥以后,加入40μl SLS溶液,使团块重悬。在表面上加入
一层矿物油。然后,将样品置于CEQ 8000自动测序仪中进行进一步分析。
[0331] 为了验证核酸序列,用基于p450基因的FXPERF或GRRXCP(A/G)区域的正向引物或基于质粒或多聚A尾巴的反向引物对核酸序列在两个方向进行重新测序。在两个方向上
所有的测序至少进行两次。
[0332] 将细胞色素p450片段的核酸序列彼此比较,从编码区(与编码GRRXCP(A/G)的区域之后的第一个核酸相对应)一直到终止子。选择该区域作为p450蛋白遗传多态性的一个
指示参数。观察到大量的(超过70种)遗传上不同的p450基因,类似于其它植物物种中所
观察到的。在比较核酸序列时发现,这些基因根据其序列同一性可置于不同的序列组群中。
发现p450成员的最好的唯一的(unique)分组确定为那些具有75%或更大核酸同一性的序
列(见表1)。降低同一性百分数导致组群明显变大。观察到优选的分组是那些具有81%或更大核酸同一性的序列,更优选的分组是具有91%或更大核酸同一性的序列,最优选的分
组是具有99%或更大核酸同一性的序列。大多数组群包括至少2个成员,经常为3个或更
多个成员。没有重复观察到其它情况,说明所采用的方法既能够在所用组织中分离低表达
的mRNA又能够分离高表达的mRNA。
[0333] 基于75%或更大核酸同一性,发现两个细胞色素p450组群与之前(发现)的遗传上与这两个组群不同的烟草细胞色素基因具有核酸序列同一性。第23组在表I所
用的指数范围内,显示出与之前分别由Czernic等和Ralston等提交的GenBank序列
GI:1171579(CAA64635)和GI:14423327(或AAK62346)具有核酸同一性。GI:1171579与第
23组成员的核酸同一性为96.9%-99.5%,而GI:14423327与第23组成员的核酸同一性为
95.4%-96.9%。第31组的成员与Ralston等提交的GenBank序列GI:14423319(AAK62342)
有76.7%-97.8%的核酸同一性。表1中没有其它p450同一性组群在表1所用的参数范围
内与Ralston等、Czernic等、Wang等或LaRosa和Smigocki报道的烟草p450基因具有同
一性。
[0334] 如图76所示,对于各组,可衍生合适的核酸变性探针的共有序列,以优先从烟草植物中鉴定和分离各组的其它成员。
[0335] 表I:烟草p450核酸序列同一性组群
[0336]
[0337]
[0338]
[0339] 实施例10:分离的核酸片段的相关氨基酸序列同一性
[0340] 推测实施例8中获得的细胞色素p450片段的核酸序列的氨基酸序列。被推测的区域对应于紧跟在GXRXCP(A/G)序列基序之后的氨基酸到羧基末端,或终止子。在比较
片段的序列同一性时,氨基酸同一性为70%或更大的那些序列观察到唯一的分组(unique grouping)。氨基酸同一性为80%或更大的那些序列观察到优选的分组,更优选为90%氨
基酸同一性或更大,最优选的分组是氨基酸同一性为99%或更大的那些序列。组群和组群
成员的相应氨基酸序列示于图2。发现这些唯一的(unique)氨基酸序列中的几个与其它序列具有完全的序列同一性,因此只报道了具有相同氨基酸的一个成员。
[0341] 根据它们的核苷酸序列,表II第19组的氨基酸同一性对应于3个不同的组群。各组成员的氨基酸序列和它们的同一性示于图77。相应标示了氨基酸差异。
[0342] 选择了各氨基酸同一性组群中的至少一个成员用植物进行基因克隆和功能性研究。此外,经Northern和Southern分析评定为受乙烯处理的影响不同或具有其它生物学
差异的组群成员也被选择作基因克隆和功能研究。为有助于基因克隆,将基于序列同一性
和差异序列进行表达研究和完整植物评价以及肽特异性抗体的制备。
[0343] 表II:烟草p450氨基酸序列同一性分组
[0344]
[0345]
[0346]
[0347] 实施例11:全长克隆的相关氨基酸序列同一性
[0348] 推测实施例5中克隆的烟草全长基因核酸序列的完整氨基酸序列。通过3个保守p450结构域基序的存在来鉴定细胞色素p450基因,所述3个保守p450结构域基序对应于
羧基末端的UXXRXXZ、PXRFXF或GXRXC,其中U是E或K,X是任何氨基酸,Z是P、T、S或M。
还注意到这些克隆中的两个,D130-AA1和D101-BA2几乎是完整的但缺少合适的终止子,然
而它们都含有上述的3个p450细胞色素结构域。用BLAST程序鉴定所有p450具有的氨
基酸同一性,把它们的全长序列彼此比较并且和已知的烟草基因比较。该程序使用了NCBI
特定的BLAST工具(两序列比对(Align two sequences,bl2seq),http://www.ncbi.nlm.
nih.oov/blast/bl2sea7bl2.html)。在没有过滤器的情况下用BLASTN比对两个核酸序列,
用BLASTP比对氨基酸序列。基于它们的氨基酸同一性百分比,将各序列分到同一性组群
中,其中各组群中包括的成员与另一个成员至少具有85%同一性。氨基酸同一性为90%或
更大的那些序列观察到优选的分组,更优选的分组具有95%氨基酸同一性或更大,最优选
的分组具有氨基酸同一性为99%或更大的那些序列。采用这些标准,鉴定出25个不同的组
群,示于表III。
[0349] 在表III用于氨基酸同一性的参数范围内,发现3个组群与已知烟草基因具有大于85%或更大的同一性。第5组的成员与先前Ralston等提交的GenBank序列
GI:14423327(或AAK62346)具有高达96%的全长序列氨基酸同一性。第23组与Ralston
等提交的GI:14423328(或AAK62347)有高达93%的氨基酸同一性。第24组与Ralston等
提交的GI:14423318(或AAK62343)有92%的氨基酸同一性。
[0350] 表III:烟草全长p450基因的氨基酸序列同一性组群
[0351]
[0352]
[0353] 根据靠近羧基末端的UXXRXXZ p450结构域和GXRXC p450结构域之间高度保守的氨基酸同源性进一步将这些全长基因分组。如图3所示,比对各克隆保守结构域彼此之间
的序列同源性,并将这些克隆分到不同的同源性组群中。在几种情况下,虽然某克隆的核酸序列是不同的,但该区域的氨基酸序列是相同的。氨基酸同一性为90%或更大的那些序列
观察到优选的分组,更优选的分组具有95%氨基酸同一性或更大,最优选的分组具有氨基
酸同一性为99%或更大的那些序列。最终的分组类似于根据这些克隆的完整氨基酸序列的
同一性百分比而做的分组,第17组除外(表III),它被分为2个不同的组。
[0354] 在表IV用于氨基酸同一性的参数范围内,发现3个组群与已知烟草基因具有90%或更大的同一性。第5组的成员与先前Ralston等提交的GenBank序列GI:14423326(或
AAK62346)具有高达93.4%的全长序列氨基酸同一性。第23组与Ralston等提交的
GI:14423328(或AAK62347)有高达91.8%的氨基酸同一性。第24组与Ralston等提交的
GI:14423318(或AAK62342)有98.8%的同一性。
[0355] 表IV:烟草p450基因保守结构域之间区域的氨基酸序列同一性组群
[0356]
[0357]
[0358] 实施例12:缺少一个或多个烟草细胞色素p450特异性结构域的烟草细胞色素p450克隆
[0359] 4个克隆与表III报道的其它烟草细胞色素基因具有高度的核酸同源性,核酸同源性介于90%至99%之间。这4个克隆包括D136-AD5、D138-AD12、D243-AB3和D250-AC11。
然而,因为核苷酸移码框的原因,这些基因不含有细胞色素p450C-末端的3个结构域中的
一个或多个,因此排除在表III和IV所示的同一性组群之外。
[0360] 有一个克隆,D95-AG1的氨基酸同一性不含有第3个结构域GXRXC,该结构域用来对表III或表IV中的p450烟草基因分组。该克隆的核酸同源性与其它烟草细胞色素基因
的同源性低。该克隆代表了烟草中细胞色素p450基因的一个新的、不同的组群。
[0361] 实施例13:烟草细胞色素p450片段和克隆在改变烟草性质调控方面的应用
[0362] 烟草p450核酸片段或整个基因可用于鉴定和选择烟草表型或组成有所改变的植株,更重要的是,可用于鉴定和选择代谢物发生了变化的植株。用例如以反义方向(用于下调)或有义方向(用于上调)将掺入选自本文所述的核酸片段或全长基因的多种转化系统来产生转基因烟草植物。对于全长基因的过量表达,编码本文所述全长基因的完整或功能性
部分或氨基酸序列的任何核酸序列都是理想的,它们可有效增加某个酶的表达并因此在烟
草中产生表型效果。通过一系列的回交获得纯合烟草品系,并评价其表型变化,包括但不限于,用本领域一般技术人员可获得的常用技术来分析内源性p450RNA、转录物、p450表达的肽和植物代谢物的浓度。
[0363] 烟草植物中表现出来的变化提供了感兴趣的所选基因的功能性作用的信息,或者可用作优选的烟草植物品种。
[0364] 实施例14:鉴定乙烯处理的转化株品系中诱导的基因
[0365] 采用高密度寡核苷酸阵列技术,Affymetrix基因芯片(Affymetrix Inc.,Santa Clara,CA)阵列来进行基因表达的定量和高度平行性检测。在
使用该技术时,通过在固体表面上直接合成寡核苷酸来制作核酸阵列。这种固相化学能够
产生含有数十万个寡核苷酸探针的阵列,这些寡核苷酸探针以极高的密度压缩在芯片上,
这种芯片称为 可由一个杂交同时筛选几千个基因。每个基因通常由一组的
11-25对探针来代表,这取决于基因的大小。设计探针以使其具有最大的敏感性、特异性和可重复性,从而使其总是可以分辨出特异性和背景信号以及密切相关的靶序列。
[0366] Affymetrix基因芯片杂交试验包括下列步骤:设计和制备阵列,从分离自生物样品的RNA中制备荧光标记的靶,标记的靶与基因芯片杂交,筛选芯片,分析扫描的图像,产生基因表达谱。
[0367] A.Affymetrix基因芯片的设计和定制
[0368] 定 制 Affymetrix Inc.(Santa Clara,CA)生 产 的 GeneChip CustomExpressAdvantage Array。芯片的大小是18微米,芯片的格式是100-2187,可容纳528组探针
(11,628个探针)。除了来自GenBank的核酸序列之外,所有序列都选自我们之前鉴定出的烟草克隆,所有探针都是定制设计的。共选择了400个烟草基因或片段包括在基因芯片中。
所选择的寡核苷酸的序列是基于基因3’末端的独特区域。所选择的核酸序列由如(本专利申请)所述从烟草中克隆的56个全长p450基因和71个p450片段组成。其它烟草序列包
括270个烟草EST,用Clontech SSH试剂盒(BD Biosciences,Palo Alto,CA)从抑制差减
文库产生了这些EST。在这些基因中,一些寡核苷酸序列选自GenBank所列的细胞色素p450
基因。多达25个探针用于每个全长基因,11个探针用于每个片段。因为缺乏独特的、高质
量的探针,有些克隆所用的探针数目要少。 中也包括了合适的对照序列。
[0369] 探针阵列是25聚寡核苷酸,用基于半导体的光刻蚀法结合固相化学合成技术将这些寡核苷酸直接合成到玻璃片上。各阵列含有多达100,000个不同的寡核苷酸探针。因
为寡核苷酸探针合成在阵列中已知的位置上,所以可用Affymetrix Microarray 软
件将杂交模式和信号强度解释为基因同一性和相对表达水平。各探针对由一个完全配对的
寡核苷酸和一个错配的寡核苷酸组成。完全配对的探针具有与特定基因准确互补的序列,
因此可检测该基因的表达。错配探针在其碱基的中心位置有一个碱基置换,因此区别于完
全配对的探针,所述的一个碱基置换干扰了靶基因转录物的结合。错配产生非特异性的杂
交信号或背景信号,将该信号与完全配对的寡核苷酸检测到的信号比较。
[0370] B.样品制备
[0371] 杂交试验由Genome Explorations,Inc.(Memphis,TN)进行,杂交中所用的RNA样品由6对受乙烯诱导的非转化株/转化株等基因系组成。
[0372] 这些样品包括1对4407-25/4407-33未处理的白肋烟草样品,3对乙烯处理的4407-25/4407-33样品,1对乙烯处理的深色烟草NL Madole/181和1对乙烯处理的白肋变
种PBLB01/178。乙烯处理如实施例1所述。
[0373] 用改良的酸酚和氯仿方法从上述乙烯处理和未处理的叶片中提取总RNA。改良的方法是用1克组织进行研磨,随后在5毫升加入了5毫升苯酚(pH5.5)和5毫升氯仿的提
取缓冲液(100mMTris-HCl,pH 8.5;200mM NaCl;10mM EDTA;0.5%SDS)中涡旋。将提取的样品离心,保留上清。该提取步骤再重复2-3次直到上清变得澄清。加入约5毫升氯仿以除
去痕量的苯酚。加入3倍体积的ETOH和1/10体积的3M NaOAc(pH5.2)以从混合的上清组
分中沉淀RNA,在-20℃存贮1小时。转移到Corex玻璃容器中以后,在4℃9,000RPM离心
RNA组分45分钟。离心下来的团块用70%乙醇洗涤,4℃9,000RPM离心5分钟。团块干燥
以后,将RNA团块溶解在0.5毫升不含Rnase的水中。RNA团块溶解在0.5毫升不含Rnase
的水中。分别用变性甲醛凝胶和分光光度计分析总RNA的质量和数量。3-5μg/μl的总
RNA样品送至Genome explorations,inc.进行杂交试验。
[0374] C.杂交、检测和数据输出
[0375] 如下所述制备标记的RNA材料。按生产商的方法用SuperScript双链cDNA合成试剂盒(Gibco Life Technologies)和寡-dT24-T7(5′-GGC CAG TGA ATT GTA ATA CGA
CTC ACT ATA GGG AGG CGG-3′)引物从5-15μg总RNA中合成第一链和第二链cDNA。
[0376] T7启动子连接的双链cDNA作为模板,用T7RNA转录物标记试剂盒(ENZODiagnostics Inc.)通过体外转录同时合成并用生物素化的UTP和CTP来标记cRNA。简
言之,用70%乙醇洗涤前述步骤中合成的双链cDNA,重新悬浮在22μl不含RNA酶的水
中。cDNA与下列物质一起37℃温育5小时:10X的反应缓冲液、生物素标记的核糖核苷酸、
DTT、RNA酶抑制剂混合物各4μl,以及2μl 20X T7RNA多聚酶。经过CHROMA SPIN-100柱
(Clontech)并在-20℃沉淀1小时至过夜,将标记上的RNA与未掺入的核糖核苷酸分离。
[0377] 如下所述进行寡核苷酸阵列杂交和分析。将RNA团块重新悬浮在10μl不含RNA酶的水中,10.0μg在200mM Tris-乙酸,pH 8.1,500mM KOAc,150mM MgOAc中95℃
下用热和离子介导的水解片段化35分钟。片段化的cRNA与HG_U95Av2寡核苷酸阵列
(Affymetrix)45℃杂交16小时,该寡核苷酸阵列上含有约12,500个经注释的全长基
因以及设计用于代表EST序列的其它探针组。用6X SSPE(0.9M NaCl,60mMNaH2PO4,6mM
EDTA+0.01%Tween 20)25℃下洗涤阵列,然后50℃下用100mM MES、0.1M[Na+]、0.01%Tween
20进行严格条件下的洗涤。以藻红素(phycoerythrein)偶联的链霉亲和素(Molecular
Probes)对阵列染色,用激光共聚焦扫描仪(Hewlett-Packard)来测定荧光强度。用
Microarray软件(Affymetrix)分析扫描的图像。对于所用的所有阵列,通过将某阵列上所
有基因的平均荧光强度校正(scaling)到恒定的目标强度(250)来使上样和染色中的差异标准化。按用户指南用Microarray Suite 5.0(Affymetrix)进行数据分析。各基因的信
号强度计算为平均强度差异,以[∑(PM-MM)/(探针对的数目)]代表,其中PM和MM标示
完全配对和错配的探针。
[0378] D.数据分析和结果
[0379] Genome Explorations的检测仪器产生的表达报告证实,12组杂交是成功的。该报告上主要的参数包括噪音、校正因子、背景、总探针组、存在和不存在的探针组的数目和百分比、管家基因对照的信号强度。然后,用GCOS结合其它Microsoft的软件来分析和表
示数据。分析了处理的各对之间的信号对比。经过不同处理的基因和片段所对应的各探针
的总体数据被编译,分析编译的表达数据,如变化呼叫(call of the changes)和信号LOG2比例变化。
[0380] 基因芯片技术的一个常规用途是发现在不同组织中有差异性表达的基因。在本发明中,通过成对的转化株和非转化株烟草品系,包括4407-25/4407-33白肋变种、
PBLB01/178白肋变种和NL Madole/181深色烟草变种,测定了乙烯处理引起的遗传表达变
化。这些分析只检测由于生物学变化而使其表达发生了显著改变的那些基因。这些分析采
用了倍数(Fold)变化(信号比率)作为鉴定受诱导基因的重要标准。还考虑了其它参数,如信号密度、存在/不存在呼叫。
[0381] 在分析了转化株和非转化株样品对中约400个基因表达差异的数据之后,基于信号强度的结果说明,与非转化株品系相比,只有两个基因D121-AA8和D120-AH4在转化株品
系中可重复地被乙烯处理所诱导。如下所述表示这些数据,以说明这些基因的差异性表达。
如表V所示,在转化株品系,例如白肋烟草变种4407-33中,某基因的信号测定为与相关的
非转化株等基因品系4407-25的比率。在没有乙烯诱导时,对于所有基因,转化株与非转化株信号的比率都接近于1。用3种独立的分析方法对等基因白肋品系的分析证明,受乙烯诱
导时,相对于非转化株品系,两个基因D121-AA8和D120-AH4在转化株品系中受到诱导。这
些基因是彼此高度同源的,约有99.8%或更大的核酸序列同源性。如表V所示,它们在转
化株品系中的相对杂交信号约比相应的非转化株品系中高2-12倍。相比较的,根据两个肌
动蛋白样对照克隆(内部对照)标准化的比例,没有发现它们在转化株品系中受诱导。此外,片段D35-BG11(其编码区的序列完全包含在D121-AA8和D120-AH4基因中)在成对的等基
因转化株和非转化株品系的相同样品中被高水平诱导。白肋烟草变种的另一个等基因对,
PBLB01和178显示具有相同的基因D121-AA8和D120-AH4,乙烯处理时在转化株中受诱导。
此外,D121-AA8和D120-AH4基因优先在等基因深色烟草对NL Madole和181的转化株品
系中受诱导,证明这些基因在转化株品系中的乙烯诱导不限于白肋烟草变种。在所有情况
下,相对于相应的非转化株品系,D35-BG11片段在转化株品系中都是受诱导最高的一个。
[0382] 表V:乙烯处理的转化株和非转化株品系中克隆诱导的比较
[0383]
[0384]
[0385] *--标准化比率
[0386] 实施例15:烟草转化株品系中微粒体烟碱去甲基酶的乙烯诱导
[0387] 如下所述,对乙烯处理和非处理的成对的转化株和非转化株中富含微粒体的组分中去甲基酶的酶活进行生化分析。
[0388] A.微粒体的制备
[0389] 在4℃分离微粒体。在由50mM N-(2-羟基乙基)哌嗪-N′-(2-乙磺酸)(HEPES),pH 7.5,3mM DL-二硫苏糖醇(DTT)和蛋白酶抑制剂Cocktail(Roche)(1片/50毫升)组
成的缓冲液中提取烟草叶片。粗提物通过4层粗棉布(cheesecloth)过滤以除去未打碎的
组织,滤出液20,000x g离心20分钟以除去细胞碎片。将上清以100,000x g超离心60分
钟,得到的上清即含有微粒体。将微粒体组分悬浮在提取缓冲液中,进行超离心步骤,其中提取缓冲液中采用0.5M的不连续蔗糖梯度。将纯化的微粒体重新悬浮在添加了10%(w/v)
甘油作为低温保护剂的提取缓冲液中。将此微粒体制品存贮在液氮冷藏罐中直到使用。
[0390] B.蛋白浓度测定
[0391] 用溶解在丙酮中的10%三氯乙酸(TCA)(w/v)沉淀微粒体蛋白,用RCDC蛋白检测试剂盒(BIO-RAD)按生产商的方法测定微粒体的蛋白浓度。
[0392] 3)烟碱去甲基酶活性试验
[0393] DL-烟碱(吡咯烷-2-14C)获得自Moravek Biochemicals,比活为54mCi/mmol。氯丙嗪(CPZ)和氧化的细胞色素(Cyt.C)(二者均为P450抑制剂)购自Sigma。还原型烟酰
胺腺嘌呤二核苷酸磷酸盐(NADPH)是细胞色素P450的典型电子供体,它通过NADPH:细胞
色素P450还原酶供应电子。在对照组的温育中去掉了NADPH。常规的酶活试验由微粒体
14
蛋白(约2mg/ml)、6mM NADPH、55μM C标记的烟碱组成。CPZ和Cyt.C的使用浓度分别是
1mM和100μM。反应在25℃进行1小时,加入300μl甲醇到各25μl反应混合物中终止反
应。离心后,用Inertsil ODS-33p (150x4.6mm)柱(Varian)以反相高效液相色谱(HPLC)
系统(Agilent)分离20μl的甲醇提取物。等梯度(isocratic)流动相是甲醇、50mM磷
酸钾缓冲液(pH6.25)的混合物,其中二者的比例为60∶40(v/v),流速为1毫升/分钟。
通过与真正的未标记的降烟碱的峰进行比较,收集降烟碱的峰,用2900tri-carb Liquid
14
Scintillation Counter(LSC)(Perkin Elmer)进行定量。基于1小时温育中产生的 C标
记的降烟碱来计算烟碱去甲基酶的活性。
[0394] 从乙烯处理和未处理的成对的白肋转化株(4407-33品系)和非转化株(4407-25品系)烟草品系获得样品。所有未处理的样品都没有任何可检测到的微粒体烟碱去甲基酶
活性。相反,发现从乙烯处理的转化株品系获得的微粒体样品中含有大量的烟碱去甲基酶
活性。已显示,烟碱去甲基酶受P450特异性抑制剂的抑制,证明该去甲基酶活性与P450微
粒体来源的酶一致。表VI显示了从白肋转化株烟草品系中获得的一组典型的酶活结果。相
反的是,从乙烯处理的非转化株烟草中获得的样品不含有任何烟碱去甲基酶活性。这些结
果证明,在转化株品系中烟碱去甲基酶受乙烯处理的诱导,但在相应的等基因非转化株品
系中不受诱导。对于成对的等基因深色烟草品系获得了类似的结果,其中在转化株品系中
微粒体烟碱去甲基酶活性被诱导,但在相应的非转化株品系中未检测到该酶被诱导。这些
结果都证明了,微粒体烟碱去甲基酶在转化株品系中受乙烯处理的诱导,但在相应的等基
因非转化株品系中不受诱导。那些衍生自P450基因并且优先在转化株品系(相对于相应的
非转化株品系)中被诱导的基因是编码烟碱去甲基酶的候选基因。
[0395] 表VI:乙烯诱导的白肋转化株和非转化株品系中的去甲基酶活性
[0396]
[0397]
[0398] 实施例16:D121-AA8作为烟碱去甲基化酶的功能鉴定
[0399] 通过检测在酵母细胞中异源表达的P450的酶活证实了候选克隆(D121-AA8)的功能是编码烟碱去甲基酶。
[0400] 1.酵母表达载体的构建
[0401] 将编码P450的cDNA(121AA8)的推定蛋白编码序列克隆到酵母表达载体pYeDP60中。在翻译起始密码子(ATG)上游或终止密码子(TAA)下游通过含有BamHI和MfeI序列
的PCR引物来引入合适的BamHI和MfeI位点。扩增的PCR产物的MfeI与载体上的EcoRI
位点相容。用于扩增121AA8cDNA的引物是5′-TAGCTACGCGGATCCATGCTTTCTCCCATAGAAGC
C-3′和5′-CTGGATCACAATTGTTAGTGATGGTGATGGTGATGCGATCCTCTATAAAGCTCAGGTGCCAGGC-
3′。将编码该蛋白C-末端9个额外氨基酸(其中包括6个组氨酸)的序列区段掺入反向引
物中。这有助于诱导后带有六组氨酸(6X His)标签的P450的表达。酶切后将PCR产物在
相对于GAL10-CYC1启动子的正义反向上连接入pYeDP60载体。用酶切和DNA测序鉴定构
建体。
[0402] 2.酵母转化
[0403] 用pYeDP60-P450cDNA质粒构建体转化WAT11酵母细胞系,该细胞经改造可表达拟南芥NADPH-细胞色素P450还原酶ATR1。在电极间隙为0.2厘米的小管中混合约1μg质
粒DNA和50微升WAT11酵母细胞。用Eppendorf电转化仪(Model 2510)进行一次2.0kV
的电脉冲。将细胞涂在SGI平板(5g/L细菌酪蛋白氨基酸(bactocasamino acid)、6.7g/L
不含氨基酸的酵母含氮碱基(nitrogen base)、20g/L葡萄糖、40mg/L DL-色氨酸、20g/L琼脂粉)上。直接用随机挑选的克隆进行PCR分析来验证转化子。
[0404] 3.转化的酵母细胞中P450的表达
[0405] 单个的酵母集落接种在30mL SGI培养基(5g/L细菌酪蛋白氨基酸、6.7g/L不含氨基酸的酵母含氮碱基、20g/L葡萄糖、40mg/L DL-色氨酸)中30℃生长约24小
时。取培养液以1∶50稀释到1000mL YPGE培养基(10g/L酵母抽提物,20g/L细菌蛋
白胨,5g/L葡萄糖,30ml/L乙醇)中直到葡萄糖被完全消耗(用Diastix尿分析试剂条
(Bayer,Elkhart,IN)比色的变化来指示)。加入DL-半乳糖至终浓度2%,引发诱导克隆的
P450。该培养物再培养20小时,直到用于体内活性检测或用于微粒体制备。
[0406] 用表达pYeDP60-CYP71D20(一种P450,在烟草中催化5-表-马兜铃碱(aristolochene)和1-脱氧辣椒二醇(deoxycapsidiol)的羟基化)的WAT11酵母细胞作
为P450表达和酶活性分析的对照。
[0407] 4.体内酶活性检测
[0408] 在酵母培养物中加入DL-烟碱(吡咯烷-2-14C)检测转化的酵母细胞中烟碱去甲14
基酶的活性。在75μl半乳糖诱导的培养物中加入 C标记的烟碱(54mCi/mmol)至终浓度
55μM。将测试的培养物在14ml的聚乙烯试管中摇动孵育6小时,用900μl甲醇提取。离
心后,用rp-HPLC分离20μl甲醇提取物,用LSC定量降烟碱组分。
[0409] 对照培养物WAT11(pYeDP60-CYP71D20)未将烟碱转化为降烟碱,说明WAT11酵母细胞株不含有可将烟碱生物转化为降烟碱的内源性酶活。相反,表达121AA8基因的酵母产
生了可检测量的降烟碱,说明了P450酶的烟碱去甲基化活性。
[0410] 5.酵母微粒体制备
[0411] 用半乳糖诱导20小时后,离心收集酵母细胞,用TES-M缓冲液(50mM Tris-HCl,pH7.5,1mM EDTA,0.6M山梨醇,10mM 2-巯基乙醇)洗涤2次。将团块重新悬浮在提取缓冲液
(50mMTris-HCl,pH 7.5,1mM EDTA,0.6M山梨醇,2mM 2-巯基乙醇,1%牛血清白蛋白,1片
/50ml的蛋白酶抑制剂Cocktail(Roche))中。然后用玻璃珠(直径0.5mm,Sigma)破碎细
胞。细胞提取物20,000x g离心20分钟以除去细胞碎片。上清以100,000x g超离心60分
钟,产生的团块即含有微粒体组分。将微粒体组分悬浮在TEG-M缓冲液(50mM Tris-HCl,pH
7.5,1mM EDTA,20%甘油和1.5mM 2-巯基乙醇)中,蛋白浓度为1mg/mL。将微粒体制品存
贮在液氮冷冻管中直到使用。
[0412] 6.酵母微粒体中的酶活性检测
[0413] 除了蛋白浓度恒定为1mg/mL之外,酵母微粒体制品中烟碱去甲基化酶活性的检测与烟草叶片(实施例15)微粒体制品中的检测方法相同。
[0414] 表达CYP71D20的对照酵母细胞的微粒体制品不具有可检测到的微粒体烟碱去甲基化酶活性。相反,表达121AA8基因的酵母细胞中获得的微粒体样品具有显著水平的烟碱
去甲基化酶活性。烟碱去甲基化酶活性需要NADPH并且已显示它受P450特异性抑制剂的抑
制,与已研究的P450一致。表VII示出了从酵母细胞获得的一组典型的酶活性试验结果。
[0415] 表VII:表达121AA8和对照P450的酵母细胞微粒体中的去甲基化酶活性
[0416]
[0417] *--3次重复的平均结果
[0418] 综合起来,这些结果证明,克隆到的全长基因D121-AA8编码细胞色素P450蛋白,该蛋白在酵母中表达时催化烟碱转化为降烟碱。
[0419] 考虑到本发明前面的详细描述,预期在本发明的实施中本领域技术人员可进行很多改进和变化。因此,这些改进和变化都包括在下面权利要求的范围内。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用