会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 软管,管道及配件 / 油气管道 / 一种油气管道爆管检测定位方法

一种油气管道爆管检测定位方法

阅读:1109发布:2020-05-30

IPRDB可以提供一种油气管道爆管检测定位方法专利检索,专利查询,专利分析的服务。并且本发明公开了一种油气管道爆管检测定位方法,属于油气储运技术领域。所述方法包括:在待测管道上的阀室或场站内以一定距离安装第一压力传感器、第二压力传感器和音波信号传感器,接收负压波信号和声波信号,分别提取负压波信号特征值和声波信号特征值以计算得到报警特征值,确定所述待测管道是否发生爆管,根据负压波信号和声波信号计算待测管道泄漏位置。本发明通过提出一种油气管道爆管检测方法,结合多种检测方法的优势,降低了误报警的概率,便于及时发现报警信息;同时,提出一种油气管道爆管定位方法,可以定位待测管道的泄漏位置,所需设备安装紧凑、操作便利、能够实现独立定位。,下面是一种油气管道爆管检测定位方法专利的具体信息内容。

1.一种油气管道爆管检测定位方法,其特征在于,所述方法包括:在待测管道上的阀室或场站内以一定距离安装第一压力传感器和第二压力传感器,并于所述第一压力传感器和所述第二压力传感器之间以一定距离安装音波信号传感器;

从所述第一压力传感器和所述第二压力传感器中接收负压波信号;

从所述音波传感器中接收声波信号;

根据所述负压波信号提取负压波信号特征值和根据所述音波信号提取声波信号特征值;

根据所述负压波信号特征值和所述声波信号特征值计算得到报警特征值;

根据所述报警特征值确定所述待测管道是否发生爆管;

根据所述负压波信号计算所述待测管道内的负压波波速;

根据所述音波信号计算所述待测管道内的声速;

根据所述负压波波速和所述声速计算所述待测管道内的泄露发生时间;

根据所述泄露发生时间和所述负压波波速计算所述待测管道泄漏位置。

2.根据权利要求1所述的方法,其特征在于,根据所述报警特征值确定所述待测管道是否发生爆管具体包括:如果所述报警特征值使得所述待测管道爆管的概率大于所述待测管道未爆管的概率,那么可以确定所述待测管道爆管;如果所述报警特征值使得所述待测管道爆管的概率小于所述待测管道未爆管的概率,那么可以确定所述待测管道未爆管。

3.根据权利要求1所述的方法,其特征在于,所述待测管道泄漏位置的计算公式为:D=(tp2-t0)Vp+L

式中:tp2为第二压力传感器获取到负压波的时间;t0为泄漏发生时间;Vp为负压波波速;

L为音波信号传感器与第二压力传感器之间的距离。

4.根据权利要求3所述的方法,其特征在于,当音波信号传感器与第二压力传感器之间的距离L相较于测管道泄漏位置D而言非常小时,L可以忽略不计,所述待测管道泄漏位置的计算公式为:D=(tp2-t0)Vp

5.根据权利要求3所述的方法,其特征在于,所述负压波波速的计算公式为:

式中:S为第一压力传感器与第二压力传感器之间的距离;Δt为第一压力传感器与第二压力传感器获取负压波的时间差。

6.根据权利3所述的方法,其特征在于,在天然气管道等大弹性模量油气管道中需要计算所述待测管道泄漏位置时,只需一个压力传感器和音波传感器,所述负压波波速计算公式为:

式中:其中P为待测管道内的平均压力,Z为压缩系数,ρ为管道内气体密度。

7.根据权利要求6所述方法,其特征在于,根据管道控制系统提供的气体流速对所述负压波波速进行校正,得到校正后的待测管道内的负压波波速Vp。

8.根据权利要求3所述的方法,其特征在于,所述泄漏发生时间t0的计算公式为:

式中:tp2为第二压力传感器捕获到与第一压力传感器同一波负压波的时间;ta为音波传感器获取到声波的时间;Va为校正后的管道内声速。

9.根据权利要求7所述的方法,其特征在于,所述待测管道内的声速根据待测管道的温度、压力和组分得到。

说明书全文

一种油气管道爆管检测定位方法

技术领域

[0001] 本发明涉及油气储运技术领域,特别涉及一种油气管道爆管检测定位方法。

背景技术

[0002] 油气管道是油气运输的重要途径。油气管道如果发生泄漏,不仅会造成巨大的经济损失和资源浪费,而且会带来安全和污染问题,严重威胁人们的生命、财产和生存环境安全。因此,对油气管道爆管进行综合检测定位就显得尤为重要。
[0003] 目前油气管道的实时管道破裂检测方法主要有两种,分别是压力梯度法和声波法。压力梯度法是在管道沿线的各个截断阀的地方分别设置传感器,根据压力曲线梯度特征确定管道泄漏和泄漏程度;声波法是将泄漏时产生的噪声作为信号源,由传感器拾取该信号,以确定泄漏的位置和程度。
[0004] 在实现本发明的过程中,本发明人发现现有技术中至少存在以下问题:
[0005] 现有技术中,对于压力梯度法,一方面,由于地理环境和气候的变化,生产的需要和管道支线的增多,使得管道布线结构复杂,在无泄漏的情况下可能出现异常的特征而产生误报警现象,另一方面,由于压缩机启停时操作条件的改变,在无泄漏的情况下也可能出现异常的特征而产生误报警现象;对于声波法,泄漏口形状的差异对泄漏声波的特征影响较大,管道输送介质与管道内壁摩擦噪声干扰,阀门动作时噪声干扰导致误报警问题尚待解决,且难以确定泄漏的程度,该方法要求音波传感器分别安装在所检测管道的两端,操作所需人员较多,难以解决信号的记录传输以及精确可靠的时钟同步问题。

发明内容

[0006] 为了解决上述技术问题之一,本发明提供一种油气管道爆管检测定位方法,在减少管道爆管误报警概率的同时能够定位泄漏位置。
[0007] 具体而言,包括以下的技术方案:
[0008] 一种油气管道爆管检测定位方法,所述方法包括:
[0009] 在待测管道上的阀室或场站内以一定距离安装第一压力传感器和第二压力传感器,并于所述第一压力传感器和所述第二压力传感器之间以一定距离安装音波信号传感器;
[0010] 从所述第一压力传感器和所述第二压力传感器中接收负压波信号;
[0011] 从所述音波传感器中接收声波信号;
[0012] 根据所述负压波信号提取负压波信号特征值和根据所述音波信号提取声波信号特征值;
[0013] 根据所述负压波信号特征值和所述声波信号特征值计算得到报警特征值;
[0014] 根据所述报警特征值确定所述待测管道是否发生爆管;
[0015] 根据所述负压波信号计算所述待测管道内的负压波波速;
[0016] 根据所述音波信号计算所述待测管道内的声速;
[0017] 根据所述负压波波速和所述声速计算所述待测管道内的泄露发生时间;
[0018] 根据所述泄露发生时间和所述负压波波速计算所述待测管道泄漏位置。
[0019] 根据所述报警特征值确定所述待测管道是否发生爆管具体包括:如果所述报警特征值使得所述待测管道爆管的概率大于所述待测管道未爆管的概率,那么可以确定所述待测管道爆管;如果所述报警特征值使得所述待测管道爆管的概率小于所述待测管道未爆管的概率,那么可以确定所述待测管道未爆管。
[0020] 所述待测管道泄漏位置的计算公式为:
[0021] D=(tp2-t0)Vp+L
[0022] 式中:tp2为第二压力传感器获取到负压波的时间;t0为泄漏发生时间;Vp为负压波波速;L为音波信号传感器与第二压力传感器之间的距离。
[0023] 当音波信号传感器与第二压力传感器之间的距离L相较于测管道泄漏位置D而言非常小时,L可以忽略不计,所述待测管道泄漏位置的计算公式为:
[0024] D=(tp2-t0)Vp
[0025] 所述负压波波速的计算公式为:
[0026]
[0027] 式中:S为第一压力传感器与第二压力传感器之间的距离;Δt为第一压力传感器与第二压力传感器获取负压波的时间差。
[0028] 在天然气管道等大弹性模量油气管道中需要计算所述待测管道泄漏位置时,只需一个压力传感器和音波传感器,所述负压波波速计算公式为:
[0029]
[0030] 式中:其中P为待测管道内的平均压力,Z为压缩系数,ρ为管道内气体密度。
[0031] 根据管道控制系统提供的气体流速对所述负压波波速进行校正,得到校正后的待测管道内的负压波波速Vp。
[0032] 所述泄漏发生时间t0的计算公式为:
[0033]
[0034] 式中:tp2为第二压力传感器捕获到与第一压力传感器同一波负压波的时间;ta为音波传感器获取到声波的时间;Va为校正后的管道内声速。
[0035] 所述待测管道内的声速根据待测管道的温度、压力和组分得到。
[0036] 通过在待测管道上的同一侧以一定的距离安装第一压力传感器和第二压力传感器,并于第一压力传感器和第二压力传感器之间以一定的距离安装音波信号传感器,用第一压力传感器和第二压力传感器接收负压波信号,音波传感器接收声波信号,根据所述负压波信号提取负压波信号特征值和根据所述音波信号提取声波信号特征值,根据所述负压波信号特征值和所述声波信号特征值计算得到报警特征值,进而确定待测管道是否发生爆管;根据所述负压波信号计算所述待测管道内的负压波波速,根据所述音波信号计算所述待测管道内的声速,根据所述负压波波速和所述声速计算所述待测管道内的泄露发生时间,根据所述泄露发生时间和所述负压波波速计算所述待测管道泄漏位置。结合多种检测方法的优势,降低了误报警的概率,便于及时发现报警信息;同时提出一种油气管道爆管定位方法,可以定位待测管道泄漏位置,所需设备安装紧凑、操作便利、能够实现独立定位。

附图说明

[0037] 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0038] 图1是根据本发明一实施例提供的一种油气管道爆管检测定位方法的方法流程图;
[0039] 图2是根据本发明一实施例提供的油气管道泄漏位置计算示意图;
[0040] 图3是根据本发明一实施例提供的待测管道爆管检测原理图;
[0041] 图4是根据本发明另一实施例提供的大弹性模量油气管道泄漏位置计算示意图。
[0042] 图中的附图标记分别表示:
[0043] 1、待测管道,2、泄漏处,3、压力传感器,4、音波传感器。

具体实施方式

[0044] 为使本发明的技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
[0045] 本发明一实施例提供了一种油气管道爆管检测定位方法,参见图1,该方法流程具体如下:
[0046] 步骤101:在待测管道上的阀室或场站内以一定距离安装第一压力传感器和第二压力传感器,并于第一压力传感器和第二压力传感器之间以一定距离安装音波信号传感器;
[0047] 具体地,如图2所示,在待测管道上的阀室或场站内以一定的距离L安装第一压力传感器PT1和第二压力传感器PT2,并于第一压力传感器PT1和第二压力传感器PT2之间以一定距离安装音波信号传感器AT;在这里,一定的距离L为1~5m。
[0048] 步骤102:从第一压力传感器和第二压力传感器中接收负压波信号;
[0049] 步骤103:从音波传感器中接收声波信号;
[0050] 步骤104:根据负压波信号提取负压波信号特征值和根据音波信号提取声波信号特征值;
[0051] 具体地,在第一压力传感器PT1、第二压力传感器PT2和音波传感器AT中分别接入信号处理器,使用信号处理器分别对负压波信号和声波信号进行降噪去耦处理分析,有效区分管道泄漏和泵站(压缩机站)正常作业(如启停、调阀等),进而得到负压波报警和声波报警。
[0052] 其中,常用的信号处理分析方法有自适应滤波算法、KULLBACK信息测度法,小波变换相关分析法、时序分析法等。
[0053] 步骤105:根据负压波信号特征值和声波信号特征值计算得到报警特征值;
[0054] 经实验表明,负压波报警和声波报警概率相互独立,负压波信号特征值与声波信号特征值具有相同的概率分布,利用负压波信号特征值和声波信号特征值计算报警特征值,报警特征值计算公式如下:
[0055] C1P1+C2A=x
[0056] 式中:P1为负压波信号特征值,A为声波信号特征值。C1、C2是常数,x表示报警特征值。
[0057] 步骤106:根据报警特征值确定待测管道是否发生爆管;
[0058] 具体地,待测管道爆管检测原理图,如图3所示。
[0059] 设w1、w2分别表示爆管和不爆管,P(w1)表示爆管的概率,P(w2)表示不爆管的概率,且P(w1)+P(w2)=1。
[0060] P(x|w1)和P(x|w2)分别表示类别状态为w1、w2时的报警特征值x的概率密度函数。具体地,C1、C2、P(w1)、P(w2)、P(x|w1)和P(x|w2)均可由实验确定,在使用过程中上述参数也可以根据报警情况进行自适应优化,逐步提高系统灵敏度。
[0061] 因此,P(x|w1)与P(x|w2)之间的区别就表示了爆管与不爆管之间报警特征值的区别。根据贝叶斯公式可以得到P(w1|x)和P(w2|x)的取值,具体计算公式如下:
[0062]
[0063] 式中:P(x)为证据因子,可以约去。
[0064] 此时,如果报警特征值x,使得P(w1|x)大于P(w2|x),那么说明待测管道上发生了爆管,需要报警,将报警信息传至控制系统;反之,如果报警特征值x,使得P(w1|x)小于P(w2|x),那么说明待测管道上未发生爆管,将该报警信息丢弃。
[0065] 步骤107:根据所述负压波信号计算所述待测管道内的负压波波速;
[0066] 在泄漏发生时,记泄漏发生时间为t0,泄漏处立即产生因流体物质损失而引起的局部流体密度减小,进而出现瞬时压力下降和速度差,这个瞬时压力下降作用在流体介质上就作为减压波源通过管道和流体介质向泄漏处的上下游以一定速度传播。当压力传感器PT1、PT2捕获到同一波负压波时,时间分别记为tp1、tp2,两个压力传感器PT1和PT2捕获时间的时间差记为Δt。
[0067] 负压波波速Vp的计算公式为:
[0068]
[0069] 式中:S为第一压力传感器TP1与第二压力传感器TP2之间的距离;Δt为第一压力传感器TP1与第二压力传感器TP2获取负压波的时间差。
[0070] 步骤108:根据所述音波信号计算所述待测管道内的声速;
[0071] 由于管道内外的压力差,泄漏处的流体在通过泄漏处达到管道外时形成涡流,进而产生了振荡变化的声波。声波可以传播扩散返回到泄漏处并在管道内建立声场。声波由音波传感器AT捕获,捕获的时间记为ta。管道声速根据管道的温度、压力和组分得到。由管道控制系统将组分信息、管道内介质温度、压力传给处理单元进行计算,管道内声速根据管道控制系统测得的气体流速对计算出的声速进行校正,得到校正后的管道内声速Va。
[0072] 步骤109:根据所述负压波波速和所述声速计算所述待测管道内的泄露发生时间;
[0073] 泄漏发生时间t0的计算公式为:
[0074]
[0075] 式中:tp2为第二压力传感器TP2捕获到与第一压力传感器TP1同一波负压波的时间;ta为音波传感器AT获取到声波的时间;Va为校正后的管道内声速。
[0076] 步骤110:根据所述泄露发生时间和所述负压波波速计算所述待测管道泄漏位置。
[0077] 待测管道泄漏位置的计算公式为:
[0078] D=(tp2-t0)Vp+L
[0079] 式中:tp2为第二压力传感器TP2获取到负压波的时间;t0为泄漏发生时间;Vp为负压波波速;L为音波信号传感器AT与第二压力传感器TP2之间的距离;D为泄漏处与音波信号传感器AT之间的距离。
[0080] 当音波信号传感器AT与第二压力传感器TP2之间的距离L相较于测管道泄漏位置D而言非常小时,L可以忽略不计,待测管道泄漏位置的计算公式为:
[0081] D=(tp2-t0)Vp
[0082] 在本发明的另一实施例中,还提供了对于天然气管道等大弹性模量油气管道泄漏位置的计算方法,如图4所示。在天然气管道等大弹性模量油气管道中需要计算待测管道泄漏位置时,只需一个压力传感器和音波传感器,大弹性模量油气管道负压波波速的计算公式可表示为:
[0083]
[0084] 式中:其中P为待测管道内的平均压力,Z为压缩系数,ρ为管道内气体密度。
[0085] 根据管道控制系统提供的气体流速对负压波波速进行校正,得到校正后的待测管道内的负压波波速Vp,进一步地计算管道泄漏位置D。
[0086] 本实施例通过在待测管道上的同一侧以一定的距离安装第一压力传感器和第二压力传感器,并于第一压力传感器和第二压力传感器之间以一定的距离安装音波信号传感器,用第一压力传感器和第二压力传感器接收负压波信号,音波传感器接收声波信号,根据负压波信号提取负压波信号特征值和根据音波信号提取声波信号特征值,根据负压波信号特征值和声波信号特征值计算得到报警特征值,进而确定待测管道是否发生爆管;根据负压波信号计算待测管道内的负压波波速,根据音波信号计算待测管道内的声速,根据负压波波速和声速计算待测管道内的泄露发生时间,根据泄露发生时间和负压波波速计算待测管道泄漏位置。结合多种检测方法的优势,降低了误报警的概率,便于及时发现报警信息;同时提出一种油气管道爆管定位方法,可以定位待测管道泄漏位置,所需设备安装紧凑、操作便利、能够实现独立定位。
[0087] 以上所述仅是为了便于本领域的技术人员理解本发明的技术方案,并不用以限制本发明。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用