会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 解剖与生理 / 视网膜 / 中心凹视网膜假体

中心凹视网膜假体

阅读:693发布:2020-05-11

IPRDB可以提供中心凹视网膜假体专利检索,专利查询,专利分析的服务。并且提供了一种装置,其具有用于完全植入对象的眼睛中的眼内设备(20),该眼内设备(20)包括:光传感器阵列(22),其具有多个光传感器(24),每个光传感器(24)检测周围的光子并响应于此生成信号。阵列(22)的中央部分(26)中的光传感器(24)的空间密度大于阵列(22)的外部部分(28)中的光传感器(24)的空间密度。眼内设备(20)另外包括多个刺激电极(30)以及驱动电路(32),其被耦接至光传感器(24),并被配置为响应于来自光传感器(24)的信号驱动电极(30),以向眼睛的视网膜施加电脉冲。还描述了其他应用。,下面是中心凹视网膜假体专利的具体信息内容。

1.一种装置,其包括被配置为完全植入对象的眼睛中的眼内设备,所述眼内设备包括:光传感器阵列,其包括多个光传感器,每个光传感器被配置为检测周围的光子并响应于此生成信号,阵列的中央部分中的光传感器的空间密度大于阵列的外部部分中的光传感器的空间密度;

多个刺激电极;以及

驱动电路,其被耦接至所述光传感器,并被配置为响应于来自所述光传感器的信号驱动所述电极,以向眼睛的视网膜施加电脉冲。

2.根据权利要求1所述的装置,其中布置在所述中央部分和所述外部部分之间的阵列的中间部分中的光传感器的空间密度在(a)所述中央部分中的光传感器的空间密度和(b)所述外部部分中的光传感器的空间密度之间。

3.根据权利要求2所述的装置,其中所述阵列的中间部分包括多个中间部分,每个中间部分具有各自不同的光传感器的空间密度,更靠近所述中央部分的任何给定的中间部分具有的空间密度高于与给定的中间部分相比更远离所述中央部分的任意中间部分具有的空间密度。

4.根据权利要求1-3中任一项所述的装置,其中所述光传感器阵列包括至少两个集群的四个或更多光传感器,每个集群中的光传感器具有各自大致均匀的空间密度,其中更靠近所述阵列的中央部分布置的集群中的一个中的光传感器的空间密度大于更靠近所述阵列的外部部分布置的集群中的一个中的光传感器的空间密度。

5.根据权利要求4所述的装置,其中所述至少两个集群的四个或更多光传感器包括至少十个集群的四个或更多光传感器。

6.根据权利要求1-3中任一项所述的装置,其中所述多个刺激电极被设置为阵列,电极的空间密度是恒定的。

7.根据权利要求1-3中任一项所述的装置,其中所述多个刺激电极被设置为电极阵列,所述电极阵列的中央部分中的电极的空间密度大于所述电极阵列的外部部分中的电极的空间密度。

8.一种装置,其包括被配置为完全植入对象的眼睛中的眼内设备,所述眼内设备包括:光传感器阵列,其包括多个光传感器,每个光传感器被配置为检测周围的光子并响应于此生成信号;

光学放大元件,其被耦接至所述光传感器阵列,并被配置为在所述光传感器阵列的一些但少于全部的光传感器上提供放大的图像;

多个刺激电极;以及

驱动电路,其耦接至所述光传感器,并被配置为响应于来自所述光传感器的信号驱动所述电极,以向眼睛的视网膜施加电脉冲。

9.一种装置,其包括被配置为完全植入对象的眼睛中的眼内设备,所述眼内设备包括:光传感器阵列,其包括多个光传感器,每个光传感器被配置为检测周围的光子并响应于此生成信号;

刺激电极的布置,布置的中央部分中的电极的空间密度低于布置的外部部分中的电极的空间密度,所述布置使得:(a)所述外部部分围绕所述中央部分;以及(b)所述中央部分足够大以在其中包含直径至少100μm的圆;以及驱动电路,其耦接至所述光传感器,并被配置为响应于来自所述光传感器的信号驱动所述电极,以向眼睛的视网膜施加电脉冲。

10.根据权利要求9所述的装置,其中所述中央部分中的电极的空间密度为零,并且所2

述外部部分中的电极的空间密度为至少每mm4个电极。

11.根据权利要求9所述的装置,其中所述布置的外部部分包括至少第一子部分和第二子部分,所述第二子部分围绕所述第一子部分,所述布置的第二子部分中的电极的空间密度低于所述第一子部分中的电极的空间密度。

12.根据权利要求9-11中任一项所述的装置,其中所述中央部分足够大以在其中包含直径为100μm的圆。

13.一种装置,其包括被配置为完全植入对象的眼睛中的眼内设备,所述眼内设备包括:光传感器阵列,其具有光传感器阵列的中央,并且包括多个光传感器,每个光传感器被配置为检测周围的光子并响应于此生成信号;

刺激电极的阵列,其具有阵列的中央,并且被耦接至所述光传感器阵列;以及驱动电路,其被耦接至所述光传感器,并且被配置为响应于来自以距离所述光传感器阵列的中央第二距离定位的光传感器的信号,驱动以距离所述电极阵列的中央第一距离定位的电极,以向眼睛的视网膜施加电脉冲,所述第一距离大于所述第二距离。

说明书全文

中心凹视网膜假体

[0001] 相关申请的交叉引用
[0002] 本申请要求于2013年3月14日提交、名称为“中心凹视网膜假体(FOVEATED RETINAL PROSTHESIS)”、发明人为Gefen、美国专利申请号为13/827,919的优先权,其通过引用包含在本文中。

技术领域

[0003] 本发明的应用一般涉及可植入医疗设备,具体涉及视网膜假体。

背景技术

[0004] 由于变质性视网膜疾病导致的视网膜机能障碍是失明和视力受损的主要原因。视网膜假体的植入是一种用于恢复遭受视网膜相关失明的个体的某种可用视力的技术。
[0005] 视网膜是在眼睛的后侧内部部分排列的多层光敏结构。视网膜包含感光细胞,例如视杆和视锥(rods and cones),其捕获光并将光信号转换成通过视神经传输至大脑的神经信号。视杆负责光感、低分辨率黑白视觉,而视锥负责清晰、高分辨率彩色视觉。多数视锥位于中心凹(fovea)中,该中心凹限定视网膜的中央,并且容许最大视觉敏锐度。中心凹的中央部分由高浓度视锥组成,视锥浓度在中心凹的外围部分处逐渐减小。

发明内容

[0006] 对于一些应用,提供一种中心凹视网膜假体,其包括空间可变的光传感器成像装置。视网膜假体通常被配置为向视力受损的对象提供至少一些清晰的、中央的、中心凹视觉。根据本发明的一些应用,提供了一种眼内设备,其被配置为完全植入对象的眼睛中。眼内设备通常包括空间可变的光传感器阵列,其包括多个光传感器,每个光传感器被配置为检测周围的光子并响应于此生成信号。眼内设备另外包括多个刺激电极。驱动电路被耦接至光传感器,并被配置为响应于来自光传感器的信号驱动电极,以向眼睛的视网膜施加电脉冲。
[0007] 通常,光传感器阵列被设置,从而使得阵列的中央部分中的光传感器的空间密度大于阵列的外部部分中的光传感器的空间密度,类似于视网膜的天然中心凹的结构。另外地,对于一些应用,光传感器阵列的中间部分被布置在阵列的中央部分和外部部分之间。通常,中间部分中的光传感器的空间密度在(a)中央部分中的光传感器的空间密度和(b)外部部分中的光传感器的空间密度之间。
[0008] 对于一些应用,光传感器阵列的中间部分包括多个中间部分,每个中间部分具有各自不同的光传感器的空间密度。由此,光传感器空间密度的逐步减小或平滑减小可以提供在可选择的配置中。
[0009] 对于一些应用,光传感器阵列包括至少10个集群的两个或更多光传感器的阵列。这些集群通常包括4-64个光传感器。对于这种应用,布置在阵列的中央部分中的集群中的光传感器的空间密度大于布置在阵列的外部部分中的集群中的光传感器的空间密度。
[0010] 对于一些应用,多个刺激电极通过以下方式被设置为阵列:在该方式中,阵列中电极的空间密度是恒定的(任选地,不包括位于中央小凹之上的阵列的部分)。对于其他应用,电极阵列的中央部分(任选地,不包括位于中央小凹之上的部分)中的电极的空间密度大于电极阵列的外部部分中的电极的空间密度,例如,以减少图像的任意感知空间失真,由此图像的内部部分将由于光传感器阵列的中心凹而出现放大。
[0011] 因此,根据本发明的一些应用,提供了一种装置,其包括被配置为完全植入对象的眼睛中的眼内设备,该眼内设备包括:
[0012] 光传感器阵列,其包括多个光传感器,每个光传感器被配置为检测周围的光子并响应于此生成信号,阵列的中央部分中的光传感器的空间密度大于阵列的外部部分中的光传感器的空间密度;
[0013] 多个刺激电极;以及
[0014] 驱动电路,其被耦接至光传感器,并被配置为响应于来自光传感器的信号驱动电极,以向眼睛的视网膜施加电脉冲。
[0015] 对于一些应用,布置在中央部分和外部部分之间的阵列的中间部分中的光传感器的空间密度在(a)中央部分中的光传感器的空间密度和(b)外部部分中的光传感器的空间密度之间。
[0016] 对于一些应用,阵列的中间部分包括多个中间部分,每一个中间部分具有各自不同的光传感器的空间密度,更靠近中央部分的任何给定的中间部分具有的空间密度大于与给定的中间部分相比更远离中央部分的任意中间部分具有的空间密度。
[0017] 对于一些应用,光传感器阵列包括至少两个集群的四个或更多光传感器,每个集群中的光传感器具有各自大致均匀的空间密度,更靠近阵列的中央部分布置的集群中的一个中的光传感器的空间密度大于更靠近阵列的外部部分布置的集群中的一个中的光传感器的空间密度。
[0018] 对于一些应用,至少两个集群的四个或更多光传感器包括至少十个集群的四个或更多光传感器。
[0019] 对于一些应用,多个刺激电极被设置为阵列,电极的空间密度是恒定的。
[0020] 对于一些应用,多个刺激电极被设置为电极阵列,电极阵列的中央部分中的电极的空间密度大于电极阵列的外部部分中的电极的空间密度。
[0021] 另外,根据本发明的一些应用,提供了一种装置,其包括被配置为完全植入对象的眼睛中的眼内设备,眼内设备包括:
[0022] 光传感器阵列,其包括多个光传感器,每个光传感器被配置为检测周围的光子并响应于此生成信号;
[0023] 光学放大元件,其被耦接至光传感器阵列,并被配置为在光传感器阵列的一些但少于全部的光传感器上提供放大的图像;
[0024] 多个刺激电极;以及
[0025] 驱动电路,其耦接至光传感器,并被配置为响应于来自光传感器的信号驱动电极,以向眼睛的视网膜施加电脉冲。
[0026] 进一步,根据本发明的一些应用,提供了一种装置,其包括被配置为完全植入对象的眼睛中的眼内设备,眼内设备包括:
[0027] 光传感器阵列,其包括多个光传感器,每个光传感器被配置为检测周围的光子并响应于此生成信号;
[0028] 刺激电极的布置,布置的中央部分中的电极的空间密度低于布置的外部部分中的电极的空间密度,布置使得:(a)外部部分围绕中央部分;以及(b)中央部分足够大以在其中包含直径至少100μm的圆;以及
[0029] 驱动电路,其耦接至光传感器,并被配置为响应于来自光传感器的信号驱动电极,以向眼睛的视网膜施加电脉冲。
[0030] 对于一些应用,中央部分中的电极的空间密度为零,并且外部部分中的电极的空2
间密度为至少每mm4个电极。
[0031] 对于一些应用,布置的外部部分包括至少第一子部分和第二子部分,第二子部分围绕第一子部分,布置的第二子部分中的电极的空间密度低于第一子部分中的电极的空间密度。
[0032] 对于一些应用,中央部分足够大以在其中包含直径为100μm的圆。
[0033] 根据本发明的一些应用,还提供了一种装置,其包括:
[0034] 被配置为完全植入对象的眼睛中的眼内设备,眼内设备包括:
[0035] 光传感器阵列,其具有光传感器阵列的中央,并且包括多个光传感器,每个光传感器被配置为检测周围的光子并响应于此生成信号;
[0036] 刺激电极的阵列,其具有阵列的中央,并且被耦接至光传感器阵列;以及[0037] 驱动电路,其被耦接至光传感器,并且被配置为响应于来自以距离光传感器阵列的中央第二距离定位的光传感器的信号,驱动以距离电极阵列的中央第一距离定位的电极,以向眼睛的视网膜施加电脉冲,第一距离大于第二距离。
[0038] 结合附图,通过下面对本发明的实施例的详细说明,将更加全面地理解本发明,其中:

附图说明

[0039] 图1是根据本发明一些应用的用于在可植入眼内设备中使用的光传感器阵列的示意图;
[0040] 图2A-E是根据本发明各个应用的图1的用于在可植入眼内设备中使用的光传感器阵列的替换配置的示意图;
[0041] 图3A-B是根据本发明各个应用的与图1-2中显示的任意光传感器阵列一起使用的植入对象的眼睛中的刺激电极的阵列的示意图;
[0042] 图4A-B是根据本发明各个应用的与图1-2中显示的任意光传感器阵列一起使用的可植入对象的眼睛中的刺激电极的阵列的示意图;
[0043] 图5A-B是根据本发明各个应用的与图1-2中显示的任意光传感器阵列一起使用的可植入对象的眼睛中的刺激电极的阵列的仰视图示意图。

具体实施方式

[0044] 参考图1,图1是根据本发明一些应用的被配置为用作可植入眼内设备20的部分的光传感器阵列22的示意图。光传感器阵列22包括多个光传感器24,每个光传感器24被配置为检测周围的光子并响应于此生成信号。联接至光传感器24的驱动电路32响应于来自光传感器的信号驱动多个刺激电极30,以向眼睛的视网膜施加电脉冲。
[0045] 如图1中示意地显示,光传感器阵列22被设置,从而使得阵列22的中央部分26中的光传感器24的空间密度大于阵列22的外部部分28中的光传感器24的空间密度。如图所示,布置在中央部分26中的两个光传感器24之间的距离D1小于布置在外部部分28中的两个光传感器24之间的距离D4。例如,D1通常大于2μm和/或小于100μm,例如,大于4μm和/或小于50μm。D4通常大于40μm和/或小于1000μm,例如,大于100μm和/或小于500μm(例如,300μm)。D4除以D1通常至少为2(例如,至少为4)和/或小于200。
[0046] 对于一些应用,布置在中央部分26与外部部分28之间的阵列的中间部分34中的光传感器的空间密度在(a)中央部分26中的光传感器的空间密度与(b)外部部分28中的光传感器的空间密度之间。例如,中间部分34中的光传感器之间的距离D2在D1和D4之间。
[0047] 光传感器阵列22可以类似地被设置为具有多个中间部分34和36,每个中间部分具有各自不同的光传感器24的空间密度。在这种设置中,更靠近中央部分26的任何给定的中间部分34具有比任何中间部分36更高的空间密度,所述任何中间部分36与给定的中间部分34相比更远离中央部分26。光传感器阵列22可以被设置为具有2、3、4-6、7-10或者更多的中间部分。(图1中显示了两个中间部分34和36。)
[0048] 图2A是根据本发明一些应用的光传感器阵列22的示意图,其中光传感器24被设置成同心环。如本专利申请的图中所示,光传感器的环是方形环,然而本发明的范围包括了使用同心的矩形、圆形、六边形和椭圆形环,以及其他形状的同心环。六边形和圆形光传感器阵列的示例(分别)显示在图2D-E中。
[0049] 图2A中显示的每光传感器24环具有以在同一环中分离相邻光传感器的给定的距离D13布置在其中的光传感器。如图2A中显示的光传感器阵列22的特征在于,更靠近中央部分26的环中的光传感器之间的距离D13小于更远离中央部分26的环中的光传感器之间的距离D14。在图2A中所示的应用中,从中央部分26走向外部部分28的连续环的每个连续环中光传感器之间的距离,逐渐增加且通常单调增加。
[0050] 替换地或另外地,连续环之间的距离从更靠近中央部分26的更小距离D11增大(通常单调地增大)为更远离中央部分26的更大距离D12。
[0051] 如图2A和其他附图中所示,对于一些应用,光传感器24的环可以围绕光传感器的中央核心54,其不被设置为环形。中央核心54通常包括4-100个光传感器24。对于一些应用,中央核心54中的光传感器以4-30μm的距离D15彼此间隔,和/或中央核心54本身具有16-300μm的长度D16,作为其最长尺寸。对于一些应用,D16大于300μm(例如,如图2C中所示)。
[0052] 对于一些应用,每个连续环中的光传感器24的数量是恒定的,即使环的周长增大。可选择地,光传感器的数量增大,但不像环的周长增大那样快。进一步可选择地,每个中光传感器的数量增大与环的周长增大一样快(即,具有更中央的环的两倍数量的光传感器的环同样具有更中央的环的两倍周长),然而连续环之间的间隔增大(例如,如图所示从D11至D12)。
[0053] 根据情况基于给定设计中期望的光传感器中心凹的量,环间隔的增大(例如,D11至D12)和/或内部传感器间隔的增大(例如,D13至D14)可以符合例如等差级数2 3
(k,2k,3k……)或者等比级数(1,k,k,k……)。通常,等差级数间隔产生图像的渐变空间失真,其大致容许对象对新植入体的快速认知调节。
[0054] 图2B是根据本发明另一应用的光传感器阵列22的示意图,其中光传感器24被设置为具有等比或另一级数间隔的同心环。通常,在光传感器24被设置为具有等比级数间隔的同心环的应用中,阵列22特别节省空间。这大致由于阵列的中央部分中光传感器24的高空间密度以及阵列的外部部分中光传感器24的空间密度快速降低。除了如本文中指出的区别之外,图2B的装置与图2A的装置大致类似。
[0055] 图2C是根据本发明另一应用的光传感器阵列22的示意图,其中光传感器24被设置为集群(例如,1,1,2,2……)。通常,光传感器阵列22包括至少两个集群的四个或更多光传感器24。每个集群中的光传感器通常具有各自大致均匀的空间密度,并且更靠近阵列的中央部分26布置的集群52中的光传感器的空间密度大于更靠近阵列22的外部部分28布置的集群50中的光传感器24的空间密度。
[0056] 如图2C中所示的光传感器24的集群是二维的,由此创建的阵列22不仅具有含有各自密度的光传感器的同心环而且具有含有特定空间密度的阵列的二维区域。
[0057] 通常,集群中光传感器24的设置创建在阵列的中央部分26中具有恒定像素间隔的增大的区域,从而导致图像减少的空间失真。
[0058] 参考图1-2E。对于一些应用,光传感器24的尺寸在阵列22上变化。例如,阵列22的中央部分26中的光传感器24的尺寸可以小于阵列22的外部部分28中的光传感器
24的尺寸。可变尺寸的光传感器可以与空间可变的阵列或者可选择地与具有光传感器的恒定间隔的阵列结合使用。可选择地或另外地,由阵列22的外部部分28中的多个光传感器
24生成的信号被用于调节从更少量电极传送的电流,例如,单个电极(例如,其可以用于弱光条件下)。
[0059] 可选择地,对于一些应用,光传感器的阵列被设置为提供第一部分和第二部分,例如,左侧部分和右侧部分,而不是中央部分和外部部分。对于这种应用,光传感器阵列被设置,从而使得阵列的第一部分中的光传感器的空间密度大于阵列的第二部分中的光传感器的空间密度(该应用未示出)。
[0060] 参考图3A和3B,其为根据本发明一些应用的眼内设备20的横截面示意图,该眼内设备20包括光传感器阵列22(例如,如以上本文中参考任意附图所述)以及在视网膜前膜植入对象的视网膜72中的刺激电极30的阵列88。
[0061] 如图3A和3B中显示的眼内设备20包括刺激电极30的布置,其中布置的中央部分80中电极的空间密度低于布置的外部部分82中电极的空间密度。在这种布置中,外部部分82围绕中央部分80。
[0062] 中央部分80通常具有50-1000μm的长度(例如,直径)D9,例如,100-500μm,以大致覆盖中心小凹(foveola)90。在任何情况下,中央部分80至少足够大,以在其中包含直径D9为50-1000μm的圆,例如,直径100-500μm的圆,例如,直径100-300μm的圆。
[0063] 中央部分80通常被放置在患者的视网膜的中心小凹90之上,从而使得通常没有电极或者只有少量电极被放置在中心小凹中(例如,在具有直径D9的圆内但靠近其边缘)。在任何情况下,放置在中心小凹中的中央部分80中的电极的空间密度低于放置在中心凹外侧的视网膜组织或中心小凹外侧的旁中心凹(parafovea)中的外部部分82中的电极的空间密度。例如,如果中央部分80没有电极(如图3A和3B中所示),放置在中心小凹中的中央部分80中的电极的空间密度可以为零。对于一些应用,中心部分中的电极的空间密度
2 2
为零,外部部分中的电极的空间密度为至少每mm4个电极(例如,至少每mm10个电极和/
2
或少于每mm400或少于100个电极)。
[0064] 可选择地,中央部分80包括任意数量的电极,(例如,如图4A-B中所示),可植入的眼内设备20被配置,从而使得驱动电路32不会驱动刺激电流进入被定位在中央部分80中的电极中。对于这种应用,中央部分80中的电极30可以起到将设备20锚固到视网膜的作用并且不会驱动刺激电流进入视网膜中。
[0065] 进一步可选择地,放置在中心小凹90之上的中央部分80不包括电极,但包括锚固元件,例如,金属钉,其被配置为帮助设备20锚固至对象的视网膜。
[0066] 视网膜包括多个鉴别层,每一层具有其自身特性。这些层包括神经纤维层(NFL)、神经节细胞层(GCL)、内网层(IPL)、内核层(INL)、外网层(OPL)、外核层(ONL)、外界膜(ELM)、光传感器内段(IS)和外段(OS)、视锥光传感器外段末端(COST)以及视网膜色素上皮细胞/布鲁赫膜(RPE/BM)。电极30通常具有至少50μm和/或小于500μm的长度D18,以便于刺入视网膜。对于本发明的一些应用,其目的在于使电极30刺入视网膜并刺激大部分不存在于中心小凹中但在附近的中心凹和旁中心凹中相对厚的层(例如,内核层和/或神经节细胞层)。对于这些应用,电极30通常被设置以提供如所描述的中央部分80,从而不提供意在不具有重大的神经节处理的视网膜的一部分(中心小凹)上生成图像感知的刺激。
[0067] 通常,如图3A中所示,刺激电极30以阵列设置,外部部分82中的电极的空间密度是恒定的(例如,100μm)。例如,相邻电极之间的距离D5通常大于10μm和/或小于500μm。对于电极30的阵列被设置为方形或矩形阵列的应用,阵列的最长排或列通常具有大于1mm和/或小于6.0mm(例如,2-4mm)的长度D10,以大致覆盖旁中心凹。对于电极的其他设置(例如,如图5A-B中电极阵列的仰视图中所示的电极的同心圆),这种D10的值代表阵列中两个电极之间的最远距离(例如,圆的直径)。
[0068] 对于一些应用,包括单个透镜(如所示的)或多个透镜(例如,望远镜,该配置未示出)的光学放大元件70被耦接至光传感器阵列22,并且在光传感器阵列22的一些但少于全部的光传感器24上提供放大的图像。通常,元件70距离光传感器阵列22至少1mm和/或小于30mm(例如,小于15mm)的距离D8布置。这一设置提供所观看的图像的放大,其可以与如本文中以上描述的光传感器的空间密度变化结合使用,或者在不存在如本文中以上描述的光传感器的空间密度变化的情况下使用。
[0069] 参考图3B。对于一些应用,布置的外部部分82包括至少第一子部分84和第二子部分86,第二子部分围绕第一子部分。布置的第二子部分86中的电极的空间密度低于第一子部分84中的电极的空间密度,例如,以提供具有执行更多即将到来的视觉信息的神经节处理能力的视网膜的部分中更高的空间刺激分辨率。例如,子部分84中的电极30可以按照至少10μm和/或小于100μm的距离D6分离,同时子部分86中的电极30可以按照至少300μm和/或小于500μm的距离D7分离。
[0070] 参考图4A-B,其为根据本发明各个应用的阵列88的示意图。对于一些应用,阵列88不包括如本文中以上参考图3A-B所述的不具有电极的部分80。如图4A中所示,刺激电极30被设置为阵列88,从而使得阵列上电极的空间密度是恒定的(例如,具有100μm的电极间间隔)。可选择地,如图4B中所示,阵列88包括中央部分87以及外部部分89,并且中央部分87中的电极的空间密度大于阵列88的外部部分89中的电极的空间密度。
[0071] 参考图5A-B,其为根据本发明各个应用、用于与图1-2中所示的任意光传感器阵列一起使用的可植入对象的眼睛中的刺激电极30的阵列88的仰视图的示意图。如图5A-B中所示,对于一些应用,阵列88包括中央部分80,其通常至少足够大以在其中包含直径D9为50-1000μm的圆,例如,直径100-500μm的圆,例如,直径100-300μm的圆。
[0072] 参考图1-5B。对于一些应用,光传感器阵列22和电极30的阵列88具有类似的空间分布,从而使得每个光传感器24在阵列22上的位置对应于单个电极30的位置(例如,每个光传感器被定位在相应的电极之上)。通常在这种应用中,图像的感知空间失真减少。
[0073] 可选择地,光传感器阵列22和电极30的阵列88具有不同的空间分布,从而使得光传感器24和电极30中的一些或全部不具有一对一的空间对应关系(例如,每个光传感器不被定位在相应的电极之上)。对于一些这种应用,光传感器阵列22映射在阵列22的中央处感应的信号,以引起在电极阵列88上的径向移动位置处的刺激(即,被定位为距离阵列88的中央更远的电极)。例如,设备20可以被配置,从而使得由阵列22的中央部分26中的光传感器24接收的信号引起被定位在阵列88的外部部分82中的电极的驱动。由此,电流大致不被施加于阵列88的中央部分80(例如,电流很大程度上不被施加于中央小凹90)。如另外通过图4A中的示例显示的,以距离电极阵列88的中央第一距离D74定位的电极被配置为,响应于来自以距离光传感器阵列22的中央第二距离76定位的阵列22中的光传感器的信号、向视网膜施加电脉冲。如所示的,第一距离D74大于第二距离D76。
[0074] 应当注意,电极30可以被设置为方形、矩形、圆形、椭圆形或六边形或者其他形状的阵列。
[0075] 本领域技术人员将理解的是,本发明不限于上文特别显示和描述的那些。相反,本发明的范围包含上述各特征的组合以及子组合,以及不是现有技术的其变型例和改进方案,这些在本领域技术人员阅读前面的说明书时将是显而易见的。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用