会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明申请
    • ATOMIC FORCE MICROSCOPE APPARATUS
    • 原子力显微镜装置
    • US20100115674A1
    • 2010-05-06
    • US12529903
    • 2008-03-04
    • Hiroshi FujimotoTakashi Ooshima
    • Hiroshi FujimotoTakashi Ooshima
    • G01Q60/24
    • G01Q10/065G01Q60/363
    • An object of the present invention is to provide an atomic force microscope apparatus allowing tracking errors to be made as close to zero as possible to reduce images obtained through high-speed scanning from being degraded. To accomplish the object of the present invention, the present invention provides an atomic force microscope apparatus imaging a surface topography of a sample in a contact mode, the apparatus including a cantilever having a probe interacting with the sample surface via an atomic force and being subjected to a deflection by the atomic force, laser light provision means for allowing first laser light to enter the cantilever, light detection means, a controller estimating the surface topography of the sample surface, and data storage means for recording the estimated surface topography.
    • 本发明的目的是提供一种能够使跟踪误差尽可能接近零的原子力显微镜装置,以便通过高速扫描获得的图像降低。 为了实现本发明的目的,本发明提供一种以接触模式对样品的表面形貌进行成像的原子力显微镜装置,该装置包括具有经由原子力与样品表面相互作用的探针的悬臂, 通过原子力的偏转,用于允许第一激光进入悬臂的激光提供装置,光检测装置,估计样品表面的表面形貌的控制器和用于记录估计的表面形貌的数据存储装置。
    • 52. 发明申请
    • ATOMIC FORCE MICROSCOPE AND INTERACTION FORCE MEASUREMENT METHOD USING ATOMIC FORCE MICROSCOPE
    • 使用原子力显微镜的原子力显微镜和相互作用力测量方法
    • US20100071099A1
    • 2010-03-18
    • US12523661
    • 2008-01-07
    • Masahiro OtaNoriaki OyabuMasayuki AbeOscar CustanceYoshiaki SugimotoSeizo Morita
    • Masahiro OtaNoriaki OyabuMasayuki AbeOscar CustanceYoshiaki SugimotoSeizo Morita
    • G01Q60/24
    • G01Q60/32G01Q30/04Y10S977/863
    • A frequency shift Δf obtained by an FM-AFM can be expressed by a simple linear coupling of a ΔfLR derived from a long-range interaction force and a ΔfSR derived from a short-range interaction force. Given this factor, a Δf curve on an atomic defect and a Δf curve on a target atom on the sample surface are each measured for only a relatively short range scale (S1 and S2), and a difference Δf curve of those two curves is obtained (S3). Since the difference Δf curve is derived only from a short-range interaction force, a known conversion operation is applied to this curve obtain an F curve which illustrates the relationship between the force and the distance Z, and then the short-range interaction force on the target atom is obtained from the F curve (S4). Since the range scale in measuring the Δf curve can be narrowed, the measurement time can be shortened, and since the conversion from the Δf curve into F curve is required only once, the computational time can also be shortened. Consequently, in obtaining the short-range interaction force which acts between the atom on the sample surface and the probe, the time required for the Δf curve's measurement and the computational time are shortened, which leads to accuracy improvement and throughput enhancement.
    • 通过FM-AFM获得的频移和Dgr f可以通过从远程相互作用力得到的&Dgr; fLR和从短程相互作用力得到的&Dgr; fSR的简单线性耦合来表示。 考虑到这个因素,样品表面上的原子缺陷和目标原子上的&Dgr; f曲线每个都只测量相对较短的范围尺度(S1和S2),并且差分Dgr f曲线 得到这两条曲线(S3)。 由于差值Dgr f曲线仅来自短距离相互作用力,因此将已知的转换操作应用于该曲线,获得F曲线,该F曲线说明了力与距离Z之间的关系,然后是短距离相互作用 从F曲线获得目标原子上的力(S4)。 由于可以缩小&Dgr。f曲线的测量范围,所以可以缩短测量时间,由于从&Dgr。f曲线到F曲线的转换只需要一次,所以计算时间也可以缩短。 因此,在获得样品表面上的原子和探针之间作用的短程相互作用力时,缩短了&Dgr。f曲线测量所需的时间和计算时间,从而提高了精度和提高了生产率。
    • 54. 发明申请
    • Scanning Probe Microscope With Periodically Phase-Shifted AC Excitation
    • 扫描探针显微镜与周期相移AC激发
    • US20100031404A1
    • 2010-02-04
    • US12518417
    • 2006-12-15
    • Jörg Rychen
    • Jörg Rychen
    • G01Q60/24
    • G01Q60/30G01Q10/065G01Q60/32
    • The scanning probe microscope applies a sum of an AC voltage (Uac) and a DC voltage (Udc) to its probe. The frequency of the AC voltage (Uac) substantially corresponds to the mechanical oscillation frequency of the probe, but its phase in respect to the mechanical oscillation varies periodically. The phase modulation has a frequency fmod. The microscope measures the frequency (f) or the amplitude (K) of a master signal (S) applied to the probe's actuator, or it measures the phase of the mechanical oscillation of the cantilever in respect to the master signal (S). The spectral component at frequency fmod of the measured signal is fed to a feedback loop controller, which strives to keep it zero by adjusting the DC voltage (Udc), thereby keeping the DC voltage at the contact voltage potential.
    • 扫描探针显微镜对其探头施加交流电压(Uac)和直流电压(Udc)的总和。 交流电压(Uac)的频率基本上对应于探头的机械振荡频率,但其相对于机械振荡的相位周期性变化。 相位调制具有频率fmod。 显微镜测量施加到探头致动器的主信号(S)的频率(f)或振幅(K),或者测量相对于主信号(S)的悬臂的机械振荡的相位。 测量信号的频率fmod的频谱分量被馈送到反馈回路控制器,通过调整直流电压(Udc)来努力保持零点,从而将直流电压保持在接触电压电位。
    • 58. 发明申请
    • AFM-based lithography metrology tool
    • 基于AFM的光刻计量工具
    • US20050205776A1
    • 2005-09-22
    • US11129322
    • 2005-05-16
    • Stephane DanaJoseph Bach
    • Stephane DanaJoseph Bach
    • G01B5/28G01N23/00G01Q60/24G01Q80/00G03F7/20
    • G03F7/70625G01Q80/00G03F7/70633
    • A photolithographic track system and method for semiconductor wafer manufacture having a plurality of stations for receiving a wafer for sequential processing, including a first group of stations for performing at least a part of a photolithography process. A metrology station is provided in a position of the track system after the first group of stations, for determining whether the processed wafer is within tolerance for at least one critical dimension. If not within tolerance, the wafer is moved by the track system to a stripping station for removal of at least one layer and a return to the beginning of the first group of stations for repeating the performance of a photolithography process. Parameters may also be adjusted for purposes of the repeated performance of the process. If within tolerance, the wafer may be moved for further processing, for example, baking or off loading.
    • 一种用于半导体晶片制造的光刻轨道系统和方法,具有用于接收用于顺序处理的晶片的多个站,包括用于执行至少一部分光刻工艺的第一组站。 在第一组站之后的轨道系统的位置处提供测量站,用于确定处理的晶片是否在至少一个关键尺寸的容限内。 如果不在公差范围内,则将晶片由轨道系统移动到剥离站,以移除至少一个层,并返回到第一组站的开头,以重复执行光刻工艺。 也可以为了重复执行该过程而调整参数。 如果在公差范围内,则晶片可以被移动用于进一步处理,例如烘烤或卸载。