会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Density balancing in multiple patterning lithography using integrated circuit layout fill
    • 使用集成电路布局填充的多重图案化光刻中的密度平衡
    • US08627245B1
    • 2014-01-07
    • US13596140
    • 2012-08-28
    • Shayak BanerjeeLars W. LiebmannIan P. Stobert
    • Shayak BanerjeeLars W. LiebmannIan P. Stobert
    • G06F17/50
    • G03F7/70466G03F7/70433
    • In various embodiments, a method of designing an integrated circuit (IC) layout for a multiple patterning layout fill process includes: providing a pre-characterized mask tile library including a plurality of distinct mask tiles each having a distinct mask density on a plurality of distinct exposures each associated with a patterning process in the multiple patterning process; determining a density of a mask group in a first layout window in the IC layout, the first layout window including an open space unfilled by the mask group; and selecting a set of mask tiles from the plurality of distinct mask tiles to fill a portion of the open space, the selecting based upon the determined density of the mask group in the first layout window and the distinct mask density of the selected set of mask tiles on the plurality of distinct exposures.
    • 在各种实施例中,设计用于多图案化布局填充处理的集成电路(IC)布局的方法包括:提供预先表征的掩模片库,其包括多个不同的掩模片,每个掩模片在多个不同的图案布局填充处理中具有不同的掩模密度 在多个图案化工艺中每个与图案化工艺相关联的曝光; 确定所述IC布局中的第一布局窗口中的掩模组的密度,所述第一布局窗口包括未被所述掩模组填充的开放空间; 以及从所述多个不同的掩模块中选择一组掩模块以填充所述开放空间的一部分,所述选择基于所述第一布局窗口中所确定的所述掩模组的密度和所选择的掩模组的所述不同掩模密度 多个不同曝光的瓦片。
    • 4. 发明授权
    • Electrically-driven optical proximity correction to compensate for non-optical effects
    • 电动光学接近校正补偿非光学效果
    • US08103983B2
    • 2012-01-24
    • US12269477
    • 2008-11-12
    • Kanak B. AgarwalShayak BanerjeePraveen ElakkumananLars W. Liebmann
    • Kanak B. AgarwalShayak BanerjeePraveen ElakkumananLars W. Liebmann
    • G06F17/50
    • G06F17/5081G03F1/36G06F2217/10
    • A contour of a mask design for an integrated circuit is modified to compensate for systematic variations arising from non-optical effects such as stress, well proximity, rapid thermal anneal, or spacer thickness. Electrical characteristics of a simulated integrated circuit chip fabricated using the mask design are extracted and compared to design specifications, and one or more edges of the contour are adjusted to reduce the systematic variation until the electrical characteristic is within specification. The particular electrical characteristic preferably depends on which layer is to be fabricated from the mask: on-current for a polysilicon; resistance for contact; resistance and capacitance for metal; current for active; and resistance for vias. For systematic threshold voltage variation, the contour is adjusted to match a gate length which corresponds to an on-current value according to pre-calculated curves for contour current and gate length at a nominal threshold voltage of the chip.
    • 改进了用于集成电路的掩模设计的轮廓,以补偿由非光学效应(例如应力,阱接近度,快速热退火或间隔物厚度)引起的系统变化。 提取使用掩模设计制造的模拟集成电路芯片的电气特性,并将其与设计规范进行比较,并调整轮廓的一个或多个边缘以减少系统变化,直到电气特性在规格范围内。 特定的电特性优选地取决于由掩模制成的层:多晶硅的导通电流; 接触阻力; 金属电阻和电容; 当前活跃; 和通孔阻力。 对于系统阈值电压变化,调整轮廓以根据芯片的标称阈值电压下的轮廓电流和栅极长度的预先计算的曲线来匹配对应于导通电流值的栅极长度。
    • 5. 发明申请
    • ELECTRICALLY-DRIVEN OPTICAL PROXIMITY CORRECTION TO COMPENSATE FOR NON-OPTICAL EFFECTS
    • 电动驱动光学近似校正补偿非光学效应
    • US20100122231A1
    • 2010-05-13
    • US12269477
    • 2008-11-12
    • Kanak B. AgarwalShayak BanerjeePraveen ElakkumananLars W. Liebmann
    • Kanak B. AgarwalShayak BanerjeePraveen ElakkumananLars W. Liebmann
    • G06F17/50
    • G06F17/5081G03F1/36G06F2217/10
    • A contour of a mask design for an integrated circuit is modified to compensate for systematic variations arising from non-optical effects such as stress, well proximity, rapid thermal anneal, or spacer thickness. Electrical characteristics of a simulated integrated circuit chip fabricated using the mask design are extracted and compared to design specifications, and one or more edges of the contour are adjusted to reduce the systematic variation until the electrical characteristic is within specification. The particular electrical characteristic preferably depends on which layer is to be fabricated from the mask: on-current for a polysilicon; resistance for contact; resistance and capacitance for metal; current for active; and resistance for vias. For systematic threshold voltage variation, the contour is adjusted to match a gate length which corresponds to an on-current value according to pre-calculated curves for contour current and gate length at a nominal threshold voltage of the chip.
    • 改进了用于集成电路的掩模设计的轮廓,以补偿由非光学效应(例如应力,阱接近度,快速热退火或间隔物厚度)引起的系统变化。 提取使用掩模设计制造的模拟集成电路芯片的电气特性,并将其与设计规范进行比较,并调整轮廓的一个或多个边缘以减少系统变化,直到电气特性在规格范围内。 特定的电特性优选地取决于由掩模制成的层:多晶硅的导通电流; 接触阻力; 金属电阻和电容; 当前活跃; 和通孔阻力。 对于系统阈值电压变化,调整轮廓以根据芯片的标称阈值电压下的轮廓电流和栅极长度的预先计算的曲线来匹配对应于导通电流值的栅极长度。
    • 6. 发明授权
    • Electrically driven optical proximity correction
    • 电驱动光学邻近校正
    • US07865864B2
    • 2011-01-04
    • US12024188
    • 2008-02-01
    • Shayak BanerjeeJames A. CulpPraveen ElakkumananLars W. Liebmann
    • Shayak BanerjeeJames A. CulpPraveen ElakkumananLars W. Liebmann
    • G06F17/50
    • G06F17/5081G03F1/36
    • An approach that provides electrically driven optical proximity correction is described. In one embodiment, there is a method for performing an electrically driven optical proximity correction. In this embodiment, an integrated circuit mask layout representative of a plurality of layered shapes each defined by features and edges is received. A lithography simulation is run on the mask layout. An electrical characteristic is extracted from the output of the lithography simulation for each layer of the mask layout. A determination as to whether the extracted electrical characteristic is in conformance with a target electrical characteristic is made. Edges of the plurality of layered shapes in the mask layout are adjusted in response to determining that the extracted electrical characteristic for a layer in the mask layout fails to conform with the target electrical characteristic.
    • 描述了提供电驱动光学邻近校正的方法。 在一个实施例中,存在执行电驱动光学邻近校正的方法。 在本实施例中,接收表示由特征和边缘定义的多个分层形状的集成电路掩模布局。 在掩模布局上运行光刻仿真。 从掩模布局的每层的光刻模拟的输出中提取电特性。 确定提取的电特性是否与目标电特性一致。 响应于确定提取的掩模布局中的层的电特性不符合目标电特性,调整掩模布局中的多个分层形状的边缘。
    • 7. 发明申请
    • ELECTRICALLY DRIVEN OPTICAL PROXIMITY CORRECTION
    • 电动驱动光学临近校正
    • US20090199151A1
    • 2009-08-06
    • US12024188
    • 2008-02-01
    • Shayak BanerjeeJames A. CulpPraveen ElakkumananLars W. Liebmann
    • Shayak BanerjeeJames A. CulpPraveen ElakkumananLars W. Liebmann
    • G06F17/50
    • G06F17/5081G03F1/36
    • An approach that provides electrically driven optical proximity correction is described. In one embodiment, there is a method for performing an electrically driven optical proximity correction. In this embodiment, an integrated circuit mask layout representative of a plurality of layered shapes each defined by features and edges is received. A lithography simulation is run on the mask layout. An electrical characteristic is extracted from the output of the lithography simulation for each layer of the mask layout. A determination as to whether the extracted electrical characteristic is in conformance with a target electrical characteristic is made. Edges of the plurality of layered shapes in the mask layout are adjusted in response to determining that the extracted electrical characteristic for a layer in the mask layout fails to conform with the target electrical characteristic.
    • 描述了提供电驱动光学邻近校正的方法。 在一个实施例中,存在执行电驱动光学邻近校正的方法。 在本实施例中,接收表示由特征和边缘定义的多个分层形状的集成电路掩模布局。 在掩模布局上运行光刻仿真。 从掩模布局的每层的光刻模拟的输出中提取电特性。 确定提取的电特性是否与目标电特性一致。 响应于确定提取的掩模布局中的层的电特性不符合目标电特性,调整掩模布局中的多个分层形状的边缘。
    • 10. 发明授权
    • Machine learning approach to correct lithographic hot-spots
    • 机器学习方法来纠正光刻热点
    • US08464194B1
    • 2013-06-11
    • US13328994
    • 2011-12-16
    • Kanak Behari AgarwalShayak Banerjee
    • Kanak Behari AgarwalShayak Banerjee
    • G06F17/50
    • G03F7/70441G03F1/36G03F7/70433
    • A method, system, and computer program product for machine learning approach for detecting and correcting lithographic hot-spots in an integrated circuit (IC) design are provided in the illustrative embodiments. A layout corresponding to the IC design is received at a machine learning model (ML model). At the ML model using a hardware component, a set of input objects is identified corresponding to a target shape in the layout. A retargeting value is predicted for the target shape using the set of input objects, such that applying the retargeting value to the target shape in the layout causes the target shape to be modified into a modified target shape, wherein printing the modified target shape instead of the target shape eliminates a lithographic hot-spot that would otherwise occur from printing the target shape in a printed circuit corresponding to the IC design.
    • 在说明性实施例中提供了用于在集成电路(IC)设计中检测和校正平版印刷热点的用于机器学习方法的方法,系统和计算机程序产品。 在机器学习模型(ML模型)下接收与IC设计相对应的布局。 在使用硬件组件的ML模型中,在布局中识别与目标形状相对应的一组输入对象。 使用所述一组输入对象来对目标形状预测重定向值,使得将重定向值应用于布局中的目标形状使得目标形状被修改为修改的目标形状,其中,打印修改的目标形状而不是 目标形状消除了在对应于IC设计的印刷电路中打印目标形状否则会发生的平版印刷热点。