会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • Multiple Integrated Tips Scanning Probe Microscope
    • 多个集成提示扫描探针显微镜
    • US20160252545A1
    • 2016-09-01
    • US15054382
    • 2016-02-26
    • Xallent, LLC
    • Kwame Amponsah
    • G01Q20/02G01Q30/02
    • G01Q20/02G01Q10/045G01Q20/04G01Q30/025G01Q60/04G01Q60/30G01Q70/06
    • Device and system for characterizing samples using multiple integrated tips scanning probe microscopy. Multiple Integrated Tips (MiT) probes are comprised of two or more monolithically integrated and movable AFM tips positioned to within nm of each other, enabling unprecedented micro to nanoscale probing functionality in vacuum or ambient conditions. The tip structure is combined with capacitive comb structures offering laserless high-resolution electric-in electric-out actuation and sensing capability and novel integration with a Junction Field Effect Transistor for signal amplification and low-noise operation. This “platform-on-a-chip” approach is a paradigm shift relative to current technology based on single tips functionalized using stacks of supporting gear: lasers, nano-positioners and electronics.
    • 使用多个集成尖端扫描探针显微镜来表征样品的装置和系统。 多个集成提示(MiT)探针由两个或多个单片集成和可移动的AFM尖端组成,位于彼此的nm内,在真空或环境条件下实现了前所未有的微纳米级探测功能。 尖端结构与提供无激光高分辨率电气输出启动和感测能力的电容梳结构组合,并与用于信号放大和低噪声操作的结型场效应晶体管的新颖集成。 这种“片上平台”方法是相对于基于使用支架的激光器,纳米定位器和电子装置的功能化功能化的单一技巧的当前技术的范式转变。
    • 5. 发明授权
    • Detecting responses of micro-electromechanical system (MEMS) resonator device
    • 检测微机电系统(MEMS)谐振器装置的响应
    • US08952891B2
    • 2015-02-10
    • US13469571
    • 2012-05-11
    • Hassan TanbakuchiBernard LegrandDamien DucatteauDidier Theron
    • Hassan TanbakuchiBernard LegrandDamien DucatteauDidier Theron
    • G01G5/00
    • G01Q60/32G01Q20/04H03H9/2431
    • A system for detecting responses of a MEMS resonator device includes first and second signal sources, a signal divider and a frequency mixer. The first signal source provides a first signal and the second signal source provides a second signal that electrostatically drives the MEMS resonator device, causing mechanical vibration. The signal divider divides the first signal into a probe signal and a local oscillator (LO) signal, the probe signal being applied to the MEMS resonator device and reflected by a capacitance of the MEMS resonator device. A reflection coefficient is modulated onto the reflected probe signal at the mechanical resonance frequency by variations in the capacitance induced by the mechanical vibration of the MEMS resonator device. The frequency mixer mixes the reflected probe signal and the LO signal and outputs an intermediate frequency (IF) signal, which represents modulation of the reflection coefficient, providing an image of the mechanical vibration.
    • 用于检测MEMS谐振器装置的响应的系统包括第一和第二信号源,信号分频器和频率混频器。 第一信号源提供第一信号,第二信号源提供静电驱动MEMS谐振器装置的第二信号,引起机械振动。 信号分压器将第一信号分成探测信号和本地振荡器(LO)信号,探测信号被施加到MEMS谐振器装置并由MEMS谐振器装置的电容反射。 通过由MEMS谐振器装置的机械振动引起的电容的变化,以机械共振频率将反射系数调制到反射的探测信号上。 混频器混合反射的探测信号和LO信号,并输出表示反射系数的调制的中频(IF)信号,提供机械振动的图像。
    • 9. 发明授权
    • Piezoelectric microcantilevers and uses in atomic force microscopy
    • 压电微悬臂梁和原子力显微镜的应用
    • US07992431B2
    • 2011-08-09
    • US11946534
    • 2007-11-28
    • Wan Y. ShihWei-Heng ShihZuyan ShenQing Zhu
    • Wan Y. ShihWei-Heng ShihZuyan ShenQing Zhu
    • G01B5/28
    • G01Q60/38B82Y35/00G01B9/04G01Q10/045G01Q20/04Y10T29/42
    • The invention is direct to a piezoelectric microcantilever for static contact and dynamic noncontact atomic force microscopy which may be carried out in solution. The piezoelectric microcantilever, which includes a piezoelectric layer and a non-piezoelectric layer is capable of self actuation and detection. The piezoelectric layer may be constructed from a lead magnesium niobate-lead titanate (Pb(Mg1/3Nb2/3)O3)0.65—(PbTiO3)0.35(PMN0.65-PT0.35)(PMN-PT), zirconate titanate (PZT)/SiO2 or from any lead-free piezoelectric materials such as doped sodium-potassium niobate-lithium niobate. The piezoelectric layers of the microcantilevers may have dielectric constants of from 1600-3000 and thicknesses below 10 μm. Also disclosed are methods for fabricating microcantilever sensors and methods for atomic force microscopy employing the microcantilevers.
    • 本发明直接用于静态接触和动态非接触原子力显微镜的压电微悬臂梁,其可以在溶液中进行。 包括压电层和非压电层的压电微悬臂梁能够自动启动和检测。 压电层可以由铌酸铅镁酸铅(Pb(Mg1 / 3Nb2 / 3)O3)0.65-(PbTiO3)0.35(PMN0.65-PT0.35)(PMN-PT),锆钛酸铅(PZT) )/ SiO 2或来自任何无铅压电材料如掺杂的铌酸钠 - 铌酸锂 - 铌酸锂。 微悬臂梁的压电层可以具有1600-3000的介电常数和低于10μm的厚度。 还公开了用于制造微悬臂梁传感器的方法和使用微悬臂梁的原子力显微镜的方法。
    • 10. 发明授权
    • Resonant MEMS device that detects photons, particles and small forces
    • 检测光子,粒子和小力的共振MEMS器件
    • US07910390B2
    • 2011-03-22
    • US12370882
    • 2009-02-13
    • Andrei PavlovYelena Pavlova
    • Andrei PavlovYelena Pavlova
    • H01L21/00H01L29/82
    • H03B5/30G01J1/42G01Q20/04
    • A resonant MEMS device that detects photons, particles and small forces including atomic forces is disclosed. The device comprises a planar substrate 1, two electrodes 2 and 3 on top of the substrate, a resonant micro-electromechanical (MEMS) structure 6, such as a cantilever, anchored to first electrode 2 and arranged above the second electrode 3 separated from this electrode with an ultrathin transition layer 5. The resonant MEMS structure is working at its natural resonant frequency. The resonant oscillation of the cantilever can be initiated by applying AC voltage with frequency equaling the resonant frequency of the MEMS structure. A constant voltage is applied between the cantilever and the second electrode. The cantilever oscillates at very small amplitude ranging from few Ångstrom (Å) to several nm. During operation, a constant component of the electrical current is measured between the cantilever and the second electrode 3. The electrical current is a tunnelling current described by quantum mechanical probability with which the electrons can tunnel through the transition layer. The thickness of the transition layer is selected so that at no resonance the constant component of the electrical current is about zero and at resonance the DC electrical current has non-zero value and reaches its maximum. When the cantilever interacts with photons, particles or atoms on surfaces then the MEMS device measures their energies using change in the DC tunnelling current and shift of resonant frequency.
    • 公开了一种检测光子,微粒和包括原子力的小力的共振MEMS装置。 该装置包括平面基板1,在基板顶部的两个电极2和3,固定到第一电极2并布置在与该第一电极2分离的第二电极3上方的诸如悬臂的共振微机电(MEMS)结构6 具有超薄过渡层5的电极。谐振MEMS结构以其固有谐振频率工作。 可以通过施加频率等于MEMS结构的谐振频率的交流电压来启动悬臂的谐振振荡。 在悬臂和第二电极之间施加恒定电压。 悬臂以非常小的振幅振荡,范围从几埃(Å)到几nm。 在操作期间,在悬臂和第二电极3之间测量电流的恒定分量。电流是通过量子机械概率描述的隧道电流,电子可以通过该隧道穿过过渡层。 选择过渡层的厚度使得在没有谐振的情况下,电流的恒定分量约为零,并且在共振时,DC电流具有非零值并达到其最大值。 当悬臂与表面上的光子,粒子或原子相互作用时,MEMS器件使用DC隧道电流的变化和谐振频率的移动来测量其能量。