会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • Method for Removing/Concentrating Metal-Fog-Forming Metal Present in Molten Salt, Apparatus Thereof, and Process and Apparatus for Producing Ti or Ti Alloy by use of them
    • 熔融盐中存在的金属成雾金属的除去/浓缩方法及其制备方法以及使用它们生产Ti或Ti合金的方法和装置
    • US20090114546A1
    • 2009-05-07
    • US12224843
    • 2007-03-09
    • Tadashi OgasawaraMakoto Yamaguchi
    • Tadashi OgasawaraMakoto Yamaguchi
    • C25C3/36C25C3/28C25C7/00
    • C22B34/129C22B26/20C22B34/1272C25C3/02C25C3/28
    • The present invention provides a method by which a metal-fog-forming metal dissolved in one portion of “a molten salt mixture consisted of one or more of metal-fog-forming metal containing molten salts” (generally, a molten salt) can be removed and transferred to another portion of the molten salt to increase the concentration thereof. The method can hence be utilized as one of means for treating molten salts in various industrial fields in which metal-fog-forming metal-containing molten salts such as Ca or Na are handled. In particular, when the method is utilized in producing Ti by Ca reduction, the Ca dissolved in the molten salt to be fed to an electrolytic cell can be rapidly removed (recovered) and the Ca formation efficiency during the electrolysis of the molten salt can be enhanced. Consequently, Ca formation and TiCl4 reduction in the electrolysis of the molten salt can be efficiently carried out and a stable operation on a commercial scale is possible. Thus, the method can be efficiently utilized in producing Ti or a Ti alloy by Ca reduction.
    • 本发明提供了一种溶解在由熔融盐形成金属成形金属中的一种或多种熔融盐混合物组成的熔融盐混合物(通常为熔融盐)的一部分中的金属雾形成金属可以是 除去并转移到另一部分熔融盐中以增加其浓度。 因此,该方法可以用作处理含金属成雾金属的熔融盐如Ca或Na的各种工业领域中的熔融盐的一种手段。 特别是当通过Ca还原来制造Ti时,可以迅速除去(回收)溶解在供给电解槽的熔融盐中的Ca,并且熔融盐电解时的Ca生成效率可以为 增强。 因此,可以有效地进行熔融盐的电解中的Ca生成和TiCl 4的还原,从而能够实现商业规模的稳定化。 因此,该方法可以有效地用于通过Ca还原生产Ti或Ti合金。
    • 6. 发明授权
    • Methods for electrically forming materials
    • 电成型材料的方法
    • US07252751B2
    • 2007-08-07
    • US10794679
    • 2004-03-05
    • Guangxin Wang
    • Guangxin Wang
    • C25C3/36C25C1/24
    • C22C27/02C22C14/00C23C14/3414C25C3/26C25C3/36
    • The invention includes a method of forming a material which comprises at least two elements. More specifically, the method comprises providing an electrolytic cell comprising a cathode, an anode, and an electrolytic solution extending between the cathode and anode. A metallic product is electrolytically formed within the electrolytic cell. The forming of the metallic product comprises primarily electrorefining of a first element of the at least two elements and primarily electrowinning of a second element of the at least two elements. The invention also includes a mixed metal product comprising at least two elements, such as a product comprising tantalum and titanium.
    • 本发明包括形成包括至少两个元件的材料的方法。 更具体地,该方法包括提供包括阴极,阳极和在阴极和阳极之间延伸的电解液的电解池。 在电解池内电解形成金属制品。 金属制品的形成主要包括电解精炼至少两种元素的第一元素,并且主要电解提取至少两种元素的第二元素。 本发明还包括包含至少两种元素的混合金属产品,例如包含钽和钛的产品。
    • 7. 发明授权
    • Process for preparing silicon by electrolysis and crystallization and preparing low-alloyed and high-alloyed aluminum silicon alloys
    • 通过电解和结晶制备硅的方法,并制备低合金和高合金铝硅合金
    • US07101470B2
    • 2006-09-05
    • US10469049
    • 2002-02-21
    • Jan Reidar Stubergh
    • Jan Reidar Stubergh
    • C25C3/36
    • C25B1/006C25C3/36
    • A process for preparing highly purified silicon and aluminum and silumin (aluminum silicon alloy) in the same electrolysis furnace, by subjecting silicate and/or quartz containing rocks to electrolysis in a salt melt containing fluoride, whereby silicon and aluminum are formed in an electrolysis bath, and the aluminum formed, which may be low alloyed, flows to the bottom and is drawn off; transferring cathode with deposit to a Si-melting furnace, whereby the deposit with Si on the cathode flows down to the bottom of the melting furnace, and the cathode is removed before melting Si in said furnace, or during the electrolysis, shuffling the deposit formed on the cathode(s) down into the molten electrolysis bath, and transferring the molten or frozen bath containing Si from the cathode deposit to a Si-melting furnace after Al has flowed down to the bottom of the electrolysis furnace and been drawn off; melting the cathode deposit and/or molten or frozen bath, which contain silicon and slag, in the Si-melting furnace; stirring the mixture of silicon and slag intimately, whereafter slag and Si-melt separate directly; removing the slag from the Si-melt; and subjecting the silicon to crystal rectification.
    • 一种在同一电解炉中制备高纯硅和铝硅铝硅酸铝(铝硅合金)的方法,该方法是在含有氟化物的盐熔体中对含有岩石的硅酸盐和/或石英进行电解,由此在电解槽中形成硅和铝 并且形成的可能低合金化的铝流到底部并被排出; 将沉积物阴极转移到Si熔化炉中,由此阴极上的Si沉积物向下流到熔炉的底部,并且在所述炉中熔化Si之前除去阴极,或者在电解过程中洗涤形成的沉积物 在阴极下降到熔融电解槽中,并且在Al下降到电解炉的底部并被排出之后,将含有Si的熔融或冷冻浴从阴极沉积物转移到Si熔化炉中; 在Si熔化炉中熔化含有硅和渣的阴极沉积物和/或熔融或冷冻浴; 直接搅拌硅和渣的混合物,然后直接分离炉渣和Si熔体; 从Si熔体中除去炉渣; 并对硅进行晶体整流。
    • 10. 发明授权
    • Reducing agent regeneration system
    • 还原剂再生系统
    • US5304297A
    • 1994-04-19
    • US23653
    • 1993-02-26
    • D. Morgan TenchDennis P. AndersonLeslie F. Warren, Jr.
    • D. Morgan TenchDennis P. AndersonLeslie F. Warren, Jr.
    • C25C3/24B23K1/20B23K35/38C23C18/16C23G1/36C25C1/00C25C1/14C25C3/36C25D21/18C25D5/02C25D17/00
    • B23K1/206B23K35/38C23C18/1617C23G1/36C25D21/18B23K2201/42
    • A system is provided for regenerating reducing agents used in ancillary chemical or electrochemical processes such as restoring solderability of electronic components. The system includes a cathode, an anode, and an electrolyte system that is separated by a semipermeable ionic barrier into a catholyte and an anolyte. The catholyte includes the reduced member of a redox couple, which can be regenerated electrochemically. The redox couple of the electrolyte system is charged like a battery and discharged during the ancillary process. Regeneration of the reduced member of the redox couple is accomplished at the cathode. The cathode comprises an electrode having a high hydrogen overvoltage so that sufficiently negative potentials can be attained while minimizing hydrogen evolution. Chemical balance is maintained by the semipermeable ionic barrier, which permits proton migration from the anolyte to the catholyte but acts as a barrier against diffusion and migration of cations from the catholyte to the anolyte. Ideally, the anodic reaction is breakdown of water to form oxygen, which is vented, and protons that migrate across the ionic barrier to the catholyte replacing protons consumed in the ancillary process. The overall reaction in a system for restoring solderability of electronic components is reduction of metallic oxide to metal and release of oxygen, with no net chemical change in the composition of the regeneration system.
    • 提供了用于再生用于辅助化学或电化学过程中的还原剂的系统,例如恢复电子部件的可焊性。 该系统包括阴极,阳极和电解质系统,其由半透性离子屏障分离成阴极电解液和阳极电解液。 阴极电解质包括氧化还原对的还原成员,其可以电化学地再生。 电解液系统的氧化还原电极像电池一样充电并在辅助过程中放电。 在阴极处实现氧化还原对的还原成员的再生。 阴极包括具有高氢过电压的电极,使得可以在使氢析出最小化的同时实现足够的负电位。 化学平衡通过半透性离子屏障保持,这允许质子从阳极电解液迁移到阴极电解液,但是作为阻止阳离子从阴极电解液到阳极电解液的扩散和迁移的屏障。 理想地,阳极反应是水的分解以形成被排出的氧,以及迁移穿过离子屏障到阴极电解液的质子代替在辅助过程中消耗的质子。 用于恢复电子部件的可焊性的系统中的总体反应是将金属氧化物还原为金属和释放氧,而在再生系统的组成中没有净化学变化。