会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~

碱性蓄电池

阅读:57发布:2021-02-22

IPRDB可以提供碱性蓄电池专利检索,专利查询,专利分析的服务。并且公开一种包括其隔板经过的碱性蓄电池,这种碱性蓄电池具有高能量密度和优良的循环寿命特性。本发明的碱性蓄电池包括含氢氧化镍作为活性材料的正极、负极、隔板和电解质,所述正极的氢氧化镍材料包含至少Mn,或其表面具有氧化钴的涂层,所述隔板载有直接固定在其表面的亲水性和绝缘性的金属氧化物颗粒。所述金属氧化物颗粒是至少一种选自下列氧化钛、氧化铝、氧化锆、钛酸钾、氧化钨或氧化锌的物质。,下面是碱性蓄电池专利的具体信息内容。

1.一种镍-金属氢化物蓄电池,包括含氢氧化镍作为活性材料的正极、负极、 隔板和电解质,其中,所述正极的氢氧化镍材料包含至少Mn,或其表面具有氧化 钴的涂层,所述隔板上载有无需粘合剂而直接固定在其表面的亲水性和绝缘性的 金属氧化物颗粒,其中,所述金属氧化物颗粒是至少一种选自下列的物质:氧化 钛、氧化铝、氧化锆、钛酸钾、氧化钨或氧化锌。

2.如权利要求1所述的镍-金属氢化物蓄电池,其特征在于所述金属氧化物 颗粒是锐钛矿型TiO2。

3.如权利要求1所述的镍-金属氢化物蓄电池,其特征在于所述金属氧化物 颗粒的平均粒度为0.01-0.1微米。

4.如权利要求1所述的镍-金属氢化物蓄电池,其特征在于所述金属氧化物 颗粒在所述隔板上的负载量为隔板重量的0.1-20%。

5.一种制造权利要求1所述的镍-金属氢化物蓄电池的方法,其特征在于, 所述方法包括:将隔板浸在金属氧化物细颗粒在对隔板材料具有亲和力的介质中,使所述金 属氧化物颗粒固定在所述隔板;

使在其表面上固定了金属氧化物颗粒的所述隔板干燥。

6.如权利要求5所述的方法,其特征在于所述介质是一种醇。

说明书全文

发明领域

本发明涉及循环稳定性优良的高能量密度的碱性蓄电池

发明背景

随着半导体技术的发展,以笔记本式个人电脑为代表的便携式小型个人设备 的迅速实现,已研制出重量轻的小型多功能电子装置。因此,对广泛用作小型轻 便设备的能源的碱性蓄电池,需求在不断增加。
迄今,用作碱性蓄电池正极的主要活性材料一直是氧化镍(NiOOH)。对电极 基材本身,以高密度填充氧化镍的,高空隙度(95%)三维泡沫镍多孔材料制成的电 极(泡沫金属型电极)代替使用普通烧结基材的烧结型电极(日本审查专利公开昭 62-54235;美国专利4,251,603等),使这类镍正极的能量密度获得极大提高。
要实现高能量密度的镍正极,氧化镍粉末这种活性材料制造方法的改进是起 关键作用的重要技术。制造氧化镍的传统方法一直是以镍盐水溶液与碱如氢氧化 钠的水溶液反应,沉淀出氢氧化镍,然后老化生长出结晶,随后采用机械粉碎方 法进行粉碎。这种方法的缺陷是该方法不仅时间长,而且这种方法制得的粉末形 状不规则,不易达到高的填充密度。因此,提出了另一种制造方法,使镍盐水溶 液与氨水反应,形成镍的铵配合物,再与碱溶液进一步反应,生成氢氧化镍(日本 审查专利公开平4-80513)。这种方法不仅能在成本上经济有效地连续生产氢氧 化镍,而且由于所获粉末的形状类似于球形能达到高密度填充。
然而,采用这种方法虽然能获得生长尺寸大到数十微米能高密度填充的颗 粒,活性材料的电子导电率却较低而降低了充电/放电效率。通过在活性材料中加 入Co或其氧化物或镍等,可提高电子导电率,克服了这个问题(日本审查专利公 开昭61-37733;电化学,Vol.52,No.2,p.159(1986);能源,Vol.12, p.203(1988))。还尝试了其他方法,在活性材料中加入镍以外的其它金属元素如 Cd或Co,来提高充电/放电效率(日本审查专利公开平3-26903;日本审查专利公 开平3-50384;电化学,Vol.54,No.2,p.164(1986);能源,Vol.12, p.203(1988))。而且,从环境考虑要求使用无镉蓄电池,一方面曾提出Zn作为Cd 的替代金属元素的例子,另一方面曾提出加入三种元素,Co、Zn和Ba(美国专利 5,366,831)。为达到高效的充电/放电特性,在氧化镍中加入不同金属元素并形成 固溶体是本领域所公知的(日本未公开专利公报昭51-122737等)。
上面讨论的对电极基材的形状、组成和添加物的改进以及对活性材料的改 进,已经大大提高了正极的能量密度,目前,甚至如具有约600mAh/cc能量密度 的正极已经是工业上实用的了。然而,如前面所述,用具备更高能量密度的碱性 蓄电池来用作便携式小型设备的能源,这个需求日益迫切。为使蓄电池达到更高 的能量密度,可以设想从各个方面包括正极、负极、电解质、隔板及其结构来进 行。对负极,实际使用高能量密度的金属氢化物(能源,Vol.12,p.39(1988))代 替常规的镉负极,可达到正极体积能量密度的加倍或更大。而且,在蓄电池结构 方面,随着薄的隔板、电极基材中活性材料高密度填充等的技术发展,能迅速实 现高能量密度,但这些方面目前已几乎达到限度。
在这种情况下,要实现更加高的能量密度,使几乎占蓄电池体积一半的正极 达到高能量密度一直被认为在最有效的基本技术中,能起重要的作用。
估计实现提高正极能量密度的方法,可包括提高活性材料的堆密度,减少任 何添加物的量,以及降低泡沫镍基材中金属的含量。然而,这些方法都几乎已达 到它们的限度。需要一种方法来改善活性材料本身,以提高它们的反应活性和反 应的电子交换数。目前在制造蓄电池时,正极活性材料氧化镍时是β-Ni(OH)2(二 价氧化物),认为在正常的充电/放电操作时,它发生与β-NiOOH(三价)的一电子交 换(利用率=100%)。然而,当处于过度充电时,处于充电状态的β-NiOOH被部分 氧化成γ-NiOOH(3.5-3.8价),后者是一种高价氧化物。已知这种γ-NiOOH至少是 无序晶体结构的非化学计量物质(J.Power Source,Vol.8,p.229(1982))。 γ-NiOOH一般是电化学非活性的,不仅导致电压和容量下降,而且会引起各种问题, 例如,由于其结构的层间空间扩大造成电极体积扩大,使活性材料与导电材料或 基材的接触不良;活性材料从基质的分离;由于活性材料吸收水分子,而减少电 解质等等。这就要求采取各种措施,尽可能抑制不适合的γ-NiOOH的生成。
但是,要使用氧化镍基活性物质达到高能量密度,高价氧化物γ-NiOOH的良 好应用是很重要的。为此,提出一种具有类似于α-氢氧化物结构的物质,该物质 中Ni被不同金属如Mn(III),Al(III)或Fe(III)取代,在其层间加入某些阴离子 和水分子(J.Power Sources,Vol.35,p.294(1991);美国专利5,569,562;日 本未公开专利公报平8-225328和其它)。可以认为这种氧化物容易与具有类似于 γ-NiOOH结构的高价氧化物发生充电/放电反应。在美国专利5,348,822中公开了 另一种使用在α相和γ相之间发生充电/放电反应的方法。然而,实际上,这种氧化 物是一种层间距离较宽,堆密度极大的材料,很难达到高密度填充,表明这种氧 化物的实际使用性很差。
作为另一种方法,是在活性材料表面提供氧化钴涂层,来提高电子导电率和 充电/放电效率,使正极达到高能量密度。这种方法尽管不同于上述利用反应转变 为γ相活性材料的方法,但与仅含钴或钴氧化物的混合物制造的常规正极相比,却 明显改善了活性材料利用率和提高了正极的能量密度。
相反,本发明人新发现了一种活性材料,它能与高价氧化物γ-NiOOH进行充 电/放电反应(Abstracts of autumn Congress of Association of Electrochemistry,p.181(1995)),并注意到这种材料可作为一种新颖的活性材 料。作为一个例子,本发明人提出通过加入另一种不同的金属元素,对氧化镍进 行结构改进,达到高密度和反应电子交换数高的目的(日本未公开专利公报平10- 149821)。特别是在氧化镍中加入Mn能显著提高充电/放电效率,此时充分利用了 γ相。本发明人还阐明,控制氧化镍材料中Mn的价数,有利于进行电子交换数大 于1.2的反应,并提出了实现高密度的合成方法(日本未公开专利公报平10- 011071;日本未公开专利公报平10-053225)。除本发明人外,一些发明人曾提出 可以在β相和γ相之间进行可逆电极反应(WO 98/20570)的某种氢氧化镍。
另一方面,为了改善碱性蓄电池的各种特性包括较高的能量密度、较长的循 环寿命等,改进隔板是非常重要的。用于碱性蓄电池中隔板,要求的特性包括对 任何电解质有良好的亲和力,优良的电解质吸收速度和电解质保持容量,优良的 抗碱性,能长期经受重复的充电/放电操作,以及对在蓄电池中产生的气体有良好 的透气性。到目前,用于碱性蓄电池的隔板一直是用包括聚酰胺纤维、聚烯烃纤 维等的非织造织物制成的。特别是聚烯烃被广泛使用,它们能降低蓄电池的自放 电现象,在高温范围使用时具有良好的抗碱性。然而,由聚烯烃纤维片制成的隔 板与电解质的亲和力较差,电解质保持容量也差,从而在隔板长期处于重复充电 和放电时,表现为其中电解质的缺乏。因此,已经在研究处理这样的聚烯烃纤维 的非织造织物片,改善其亲水性。这样的处理例子包括:(a)用发烟硫酸或浓硫酸 氧化;(b)用有亲水性基团的单体进行接枝处理;(c)等离子体处理。任何一种这 样的处理可显著提高该非织造织物片对电解质的保持容量,从而有利于相对减轻 其电解质缺少的程度。还提出一种方法,是在隔板表面固定上一种离子交换细粉 末(日本未公开专利公报平9-330694)。
作为上述离子交换细粉末,认为任何离子交换树脂、金属氧化物或氢氧化物 或其无机盐都是有效的。离子交换能力高的离子交换细粉末可以吸收和捕捉金属 离子如锰离子、铁离子、铝离子等,以及铵离子、氯离子、硝酸根离子、硫酸根 离子等,所有这些离子都被认为是有害于蓄电池性能的因素,因此这种离子交换 细粉末能很好地保持碱性电解质。因此,可以认为固定有离子交换细粉末的隔板 能通过往返作用缓解自放电现象,降低电解质的缺损,制得长寿命的蓄电池。根 据这种方法,是使用粘合剂树脂,将离子交换细粉末固定在隔板上,防止离子交 换细粉末的物理分离或化学分解,结果能长期保持其有益作用。
如前面所讨论的,曾试图使用具有氧化钴涂层的氢氧化镍,或其中加入了Mn的氢氧化镍的固溶体或低共熔混合物作为正极活性材料,提高充电/放电效率,并 提高反应的电子交换数。然而,使用涂布氧化钴的氢氧化镍,与简单混合添加的 氧化钴和氢氧化镍制得的正极相比,由于重复充电和放电,在充电操作结束时, 容易以与氧析出反应竞争的方式产生γ相,尽管它能提高充电/放电效率,并能达 到高能量密度。如前面所述,γ相在重复充电/放电操作时易在电极内积聚,因为 它是电化学惰性的,并难以进行放电反应。这将导致电极溶胀,增加电极的比表 面积,使正极大量吸收包含在隔板内电解质,这又会造成隔板中缺少电解质的问 题。这又会使制成的蓄电池循环稳定性略差。与此相反,加入了Mn的氢氧化镍固 溶体或低共熔混合物,在正常的充电和放电期间利用这些产生γ相的反应(从最初 的充电/放电循环)。结果,在充电/放电循环中活性材料明显溶胀和收缩,导致电 极比表面积增加。所以,即使使用这种活性材料,隔板中的电解质也容易流动到 正极,也产生其中电解质缺少的问题。因此,与常规的氢氧化镍相比,这种氢氧 化镍的缺点是循环稳定性略差,而常规的氢氧化镍中,能抑制γ相产生,可进行大 约一个电子的交换。
本发明的主要目的是提供一种具有高能量密度和优良循环寿命特性的碱性蓄 电池,通过改进隔板解决了上述各种问题。
本发明内容
本发明提供一种碱性蓄电池,它包括含氢氧化镍作为活性材料的正极、负极、 隔板和电解质,其中,正极的氢氧化镍材料至少包含Mn,或在这种材料表面上放 置一层氧化钴涂层,在隔板表面,无需粘合剂而直接固定有亲水性和绝缘性的金 属氧化物。
具体而言,本发明提供一种镍-金属氢化物蓄电池,该电池包括含氢氧化镍 作为活性材料的正极、负极、隔板和电解质,其中,所述正极的氢氧化镍材料包 含至少Mn,或其表面具有氧化钴的涂层,所述隔板上载有无需粘合剂而直接固定 在其表面的亲水性和绝缘性的金属氧化物颗粒。
本文中,金属氧化物颗粒较好的是至少一种选自下列的物质:氧化钛、氧化 铝、氧化锆、钛酸钾、氧化钨或氧化锌,最好的是锐钛矿型的TiO2。
要求金属氧化物颗粒的平均粒度为0.01-0.1微米。
以隔板重量为基准,载于隔板上的金属氧化物颗粒量宜为0.1-20%(重量)。
附图简述
图1是根据本发明的一个实施例和比较例的镍-金属氢化物蓄电池中充电/ 放电循环数与活性材料利用率的关系图。
实施本发明的最佳方式
根据本发明,正极活性材料是具有导电性氧化钴涂层的氢氧化镍材料或含Mn的氢氧化镍材料。前者可提高导电率,从而显著提高充电/放电效率。这就可提高 活性材料的利用率,有利于实现碱性蓄电池用的高能量密度正极。另一方面,后者 允许使用反应电子交换数超过1的产生γ相的反应,从而有利于实现碱性蓄电池用 的高能量密度正极。涂有氧化钴的氢氧化镍材料还可以加入Mn和/或不同的金属元 素。而含Mn的氢氧化镍材料还可以加入不同的金属元素或在其表面涂以氧化钴。
例如,在EP-A-0833 397中公开了加入了Mn或可应用于本发明的另外的不 同金属元素的氢氧化镍材料,在EP-A-0851 516中揭示了直接固定在其表面的氧 化钴涂层的氢氧化镍材料。上述文献均参考结合于本发明中。
本发明的隔板载有直接固定在其表面的亲水性和绝缘的金属氧化物颗粒。这 种金属氧化物颗粒本身为高亲水性,当其载于隔板表面时,隔板将显著提高电解 质的保持容量。由于这种金属氧化物颗粒提高了隔板的表面积,从这方面也提高 了隔板的电解质保持容量。当然可以使用粘合剂将金属氧化物颗粒载于隔板上; 然而,不使用任何粘合剂,将金属氧化物颗粒直接载于隔板上可以产生更为显著 的效果。由于使用粘合剂将金属氧化物载于隔板,很可能会降低气体渗透性,所 以最好是不使用任何粘合剂。不使用粘合剂将金属氧化物直接载于隔板会带来金 属氧化物颗粒分离的可能。然而,本发明人进行的试验中,即使进行长时间的充 电/放电操作,仅偶尔观察到上述分离的问题。尽管其详细原因还不清楚,估计是 金属氧化物颗粒表面与隔板表面的粘合力(吸附力)较强的缘故。
将金属氧化物颗粒直接固定在隔板表面的方法有,例如将隔板浸在金属氧化 物细颗粒在醇类的分散液中,然后将醇干燥挥发掉。此时,例如可使用对隔板材 料如聚烯烃纤维具有亲和力的液体作为金属氧化物细颗粒的分散液体。
各种金属氧化物中,使用能提供高温下优良抗碱性的那些金属氧化物会有利 于进一步改善高温下的循环寿命特性。当使用本发明的正极活性材料时,这些作 用有助于抑制重复充电/放电循环产生的电解质损耗,从而保持提高活性材料利用 率的效果。
作为金属氧化物颗粒,要求至少一种选自下列的物质:氧化钛、氧化铝、氧 化锆、钛酸钾、氧化钨或氧化锌。这些氧化物在碱的水溶液中都能保持比较稳定, 并具有高的亲水性。其中,特别优选锐钛矿型TiO2。还可以对隔板纤维照射具有 对应于上述氧化物带隙的能量的光,例如紫外光,对其提供亲水性。换句话说, 激发该价电子能带上的电子,使其运动到导带,在该价电子能带上形成一个正电 性的空穴-激发。结果,光生载流子(正电性空穴-激发电子)与吸附在该氧化物表 面的水或氧反应产生过氧化物。然后,该过氧化物会氧化隔板纤维上的端基,使 其变为亲水性基团。由于具有亲水性的金属氧化物颗粒表面积越大,上述作用越 显著,因此最好选择小的颗粒粒度。通过常规的液相法或气相获得的金属氧化物 颗粒的下限为0.01微米左右。因此,要求平均粒度为0.01-0.1微米。以隔板重 量为基准,金属氧化物在隔板上的负载量小于0.1%(重量)几乎无效,负载量超 过20%(重量),会降低电解质保留的绝对体积,加速蓄电池的自放电。因此,要 求负载量为0.1-20%(重量)。
下面,以实施例方式描述本发明,但是,本发明不受这些实施例的限制。
实施例1
首先,描述合成作为正极活性材料,其表面有氧化钴的氢氧化镍的方法。
制备2.4摩尔/升NiSO4水溶液、5.52摩尔/升NaOH水溶液和4.8摩尔/升NH3 的水溶液,将这些溶液连续供给保持在40℃的一个反应器。控制各溶液进入反 应器的流量,使反应器中混合后的溶液pH在11.5-12.5范围。以恒定速度旋转反 应器中的搅拌器,使反应器中所有水溶液均匀混合。随后,当反应器中溶液的pH 恒定,镍盐浓度恒定,产生的氢氧化镍颗粒浓度达到恒定值时,收集从该反应器 溢流的悬浮液,通过滗析分离出沉淀物。分离出的沉淀物用水漂洗,然后将沉淀 出的氢氧化镍颗粒在大气环境中干燥。
制得的氢氧化镍颗粒为球形,平均粒度为10微米。X-射线衍射谱图也证实 这种氢氧化镍为单一的β-Ni(OH)2相。
将该氢氧化镍颗粒置于水中,在其中边搅拌边连续滴加0.1摩尔/升的CoSO4 水溶液,0.23摩尔/升的NaOH水溶液和0.4摩尔/升的NH3的水溶液,这就逐渐在 氢氧化镍各个颗粒的表面上沉积氧化钴。随后,过滤含这些颗粒的悬浮液,漂洗 和干燥后获得正极活性材料A。根据ICP光谱化学分析结果以及活性材料中的颗 粒组成,计算出覆盖氢氧化镍颗粒的涂层量。该结果显示以氢氧化镍重量为基准, 按氢氧化物计,涂层量为7%(重量)。
下面描述合成作为正极活性材料的含Mn的氢氧化镍的方法。
制备含2.16摩尔/升NiSO4和0.24摩尔/升MnSO4的水溶液、5.52摩尔/升NaOH水溶液和4.8摩尔/升NH3的水溶液,将这些溶液连续供给保持在40℃的一个反 应器。控制各溶液进入反应器的流量,使反应器中混合后的溶液pH在11.5-12.5 范围。同时,以800毫升/分钟的流量,向反应器中的溶液鼓入氩气,使溶液中溶 解的氧的浓度为0.05毫克/升或更少。以恒定速度旋转反应器中的搅拌器,使反 应器中所有水溶液均匀混合。随后,当反应器中溶液的pH恒定,镍盐浓度恒定, 产生的氢氧化镍颗粒浓度达到恒定值时,收集从该反应器溢流的悬浮液,通过滗 析分离出沉淀物。沉淀物用水漂洗后,将被水湿润的的氢氧化镍沉淀粉末在空气 中,80℃干燥72小时,制得活性材料B。
制得的活性材料颗粒为球形,平均粒度为10微米。ICP光谱化学分析证实颗 粒中金属元素比为Ni∶Mn=9∶1(原子比)。另外,采用碘滴定法测定所有金属的总 价数。根据获得的值计算出Mn的平均价数为3.5价。而且,X-射线衍射谱图证 实存在单一的β-Ni(OH)2相。观察到Mn的平均价数或含量与晶格常数的相关关系 (Vegard规则),说明加入的Mn部分取代了Ni。
分别使用活性材料A和B制造蓄电池。
首先,在100克活性材料A中,加入2克氧化钇粉末和30克水,捏合为糊 料。另外,在93克活性材料B中,加入7克氢氧化钴粉末、2克氧化钇规模和30 克水,捏合为糊料。将各糊料填入95%空隙率的泡沫镍基材,干燥后在施压下成 型为镍正极板。将制得的正极板切割成预定尺寸,在其上点焊电极引线,制得理 论容量为1300mAh的镍正极。假设该活性材料中的Ni可产生一个电子交换的反应, 计算在此所示的镍电极的容量密度。
使用已知用于碱性蓄电池的负极作为负极。在此是使用储氢合金 MmNi3.55Co0.75Mn0.4Al0.3制成的负极。按照要求的比例混合Mm、Ni、Co、Mn和Al, 在电弧炉中熔化,制得要求组成的储氢合金。在惰性气氛中机械粉碎该合金锭, 得到粒度为30微米的粉末。将该合金粉末与水和羧甲基纤维素粘合剂混合,捏合 成糊料。在压力下将该糊料填入电极支撑物,制得储氢合金负极板。将负极板切 割成预定尺寸,制得容量为2000mAh的负极。
将常规使用的经磺化处理的聚丙烯非织造织物(磺化聚丙烯非织造织物,厚 150微米,重60克/米2)用作隔板。隔板还进行下述处理。
首先,描述制造载有金属氧化物隔板的一个典型方法。通过超声波处理,将 平均粒度为0.05微米的锐钛矿型TiO2颗粒分散在乙醇中。将上述非织造织物浸 在该分散液中,取出后干燥。这一过程重复数次,制得载有约5%(重量)的TiO2 细颗粒的隔板X。
将隔板X置于两个电极之间,制得螺线状电极组。将该电极组置于蓄电池壳 体内,注入2.2毫升9摩尔/升KOH水溶液的电解质。然后,用密封板封闭蓄电池 的开口,该密封板上装有可在约20kgf/cm2压力下操作的安全阀,制得圆柱形AA 尺寸的密封镍-金属氢化物蓄电池。
比较例1
按照与实施例1相同的方式制造圆柱形AA尺寸的密封镍-金属氢化物蓄电 池,不同之处是,使用磺化聚丙烯非织造织物Z作为隔板。
密封的蓄电池包括正极活性材料A和实施例1的隔板X或比较例1的隔板Z, 这两个蓄电池分别命名为AX和AZ,包括正极活性材料B和实施例1的隔板X或 比较例1的隔板Z的密封蓄电池则分别命名为BX和BZ。
测试这些蓄电池的特性如下。在20℃重复进行充电/放电循环,每一循环 中,以130mA电流充电18小时,再以260mA放电直到蓄电池电压下降至1.0V, 放电的容量稳定后,在45℃重复另一个充电/放电循环,该循环中,以0.6A电 流充电3.0小时,以0.6A电流放电,直到蓄电池电压下降到0.8V。此时测定放 电后的容量,以考察测定/放电循环与活性材料利用率之间的关系。以进行一电子 反应时的容量定义为理论电容量,根据实际放电的容量与理论容量计算活性材料 的利用率。
图1是在各蓄电池充电/放电循环数与活性材料使用率之间的关系图,表明 评价结果。该图指出,采用比较例隔板Z的蓄电池在300次循环后,活性材料利 用率下降,而采用实施例隔板X的蓄电池,甚至在400一次循环后,活性材料利 用率几乎没有下降。
实施例2
按照与实施例1相同的方式制造圆柱形AA尺寸的密封镍-金属氢化物蓄电 池,不同之处是,制造隔板时改变分散液中TiO2量,或隔板在分散液中浸的次数, 使隔板上载有的TiO2细颗粒量为0-30%(重量),考察充电/放电循环与活性材料 利用率之间的关系。结果显示,以隔板重量为基准,其上TiO2量为0.1%(重量) 或更大时,其改善循环稳定性的作用与实施例1相同。还观察到隔板上TiO2量超 过20%(重量)时,循环稳定性趋于下降。尽管其细节还不清楚,但可以认为这种 现象是由于所载的细颗粒使电解质保持的绝对体积下降而造成的。因此,较好的 负载量为隔板重量的0.1-20%(重量)。
实施例3
按照与实施例1相同的方式制造圆柱形AA尺寸的密封镍-金属氢化物蓄电 池,不同之处是,负载在隔板上的TiO2细颗粒的平均粒度变为小于1微米的范围。
考察充电/放电循环与活性材料利用率之间的关系。观察到,平均粒度越小, 改善循环稳定性的效果越明显。然而,观察到平均粒度大于0.1微米会略微降低 改善循环稳定性的效果。因此,TiO2细颗粒的平均粒度为0.1微米或更小为佳。
前面的实施例1-3中,尽管使用其表面有氧化钴涂层的氢氧化镍作为活性材 料,但在活性材料的氢氧化镍中加入不同的金属元素或在表面上的氢氧化钴时, 可达到同样的效果。而且,活性材料具有通过氧化上述氢氧化钴而形成的钴化合 物涂层,也能提供同样的效果。加入Mn的氢氧化镍也可以用作活性材料,但当还 加入另外的金属元素时,效果相同。作为载于隔板上的金属氧化物,尽管使用的 是锐钛矿型TiO2,其它的钛氧化物、或氧化铝、氧化锆、钛酸钾、氧化钨或氧化 锌也产生同样效果。
工业应用
如前面所讨论的,本发明制造的碱性蓄电池能长期保持高的活性材料利用 率。因此,可以提供能量密度和循环寿命特性提高的碱性蓄电池。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用