会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明申请
    • Electric power unit operating in continuous and discontinuous conduction modes and control method therefor
    • 电力单元在连续和不连续导通模式下工作及其控制方法
    • US20070013351A1
    • 2007-01-18
    • US11485466
    • 2006-07-13
    • Toshiyuki NakaAkio NakagawaKazutoshi Nakamura
    • Toshiyuki NakaAkio NakagawaKazutoshi Nakamura
    • G05F1/00
    • H02M3/157H02M3/1588Y02B70/1466
    • An electronic power unit includes first and second MOS transistors and a digital control circuit. The first MOS transistor applies a voltage to the load. The second MOS transistor remains on while the first MOS transistor remains off and rectifies the current flowing in the load. The digital control circuit turns on the first transistor upon lapse of a first time interval from the time the second MOS transistor is turned off. The digital control circuit turns on the second MOS transistor upon lapse of a second time interval from the time the first MOS transistor is turned off. The digital control circuit controls the on-period of the first MOS transistor so that the voltage applied to the load is constant in a discontinuous conduction mode. The digital control circuit determines, while the voltage applied to the load is constant, an optimal value of the first time from the duty.
    • 电子功率单元包括第一和第二MOS晶体管和数字控制电路。 第一个MOS晶体管向负载施加电压。 第二MOS晶体管保持导通,而第一MOS晶体管保持关断并且对负载中流动的电流进行整流。 数字控制电路在从第二MOS晶体管截止时起第一时间间隔开启第一晶体管。 数字控制电路在从第一MOS晶体管截止时经过第二时间间隔开启第二MOS晶体管。 数字控制电路控制第一MOS晶体管的导通周期,使得施加到负载的电压在不连续导通模式下是恒定的。 数字控制电路在施加到负载的电压是恒定的情况下确定第一次从占空比的最佳值。
    • 53. 再颁专利
    • Semiconductor device
    • 半导体器件
    • USRE38907E1
    • 2005-12-06
    • US10452203
    • 2003-06-02
    • Tomoko MatsudaiTsutomu KojimaAkio Nakagawa
    • Tomoko MatsudaiTsutomu KojimaAkio Nakagawa
    • H03K5/22H03K5/24H03K17/082H03K17/10H03K17/14
    • H03K17/102H03K5/2481H03K17/0828H03K17/145
    • The differential amplifier of a comparator circuit includes first and second n-type MOSFETs for receiving an input signal, first and second p-type MOSFETs of a current mirror circuit, and a third n-type MOSFET of a current source circuit. The output stage includes a third p-type MOSFET for transmitting a signal, and a fourth n-type MOSFET of the current source circuit. The differential amplifier further includes fifth and sixth n-type MOSFETs respectively series-connected to the first and second n-type MOSFETs. The output stage further includes a seventh n-type MOSFET series-connected to the fourth n-type MOSFET. The gates of the fifth, sixth, and seventh n-type MOSFETs are connected to voltage bias circuits. The fifth, sixth, and seventh n-type MOSFETs suppress variations in voltage at an output node caused by poor saturation characteristics of the first, second, and fourth main n-type MOSFETs.
    • 比较器电路的差分放大器包括用于接收输入信号的第一和第二n型MOSFET,电流镜电路的第一和第二p型MOSFET以及电流源电路的第三n型MOSFET。 输出级包括用于传输信号的第三p型MOSFET和电流源电路的第四n型MOSFET。 差分放大器还包括分别串联连接到第一和第二n型MOSFET的第五和第六n型MOSFET。 输出级还包括与第四n型MOSFET串联连接的第七n型MOSFET。 第五,第六和第七n型MOSFET的栅极连接到电压偏置电路。 第五,第六和第七n型MOSFET抑制由于第一,第二和第四主n型MOSFET的饱和特性不良引起的输出节点的电压变化。
    • 55. 发明授权
    • High voltage semiconductor device having two buffer layer
    • 具有两个缓冲层的高电压半导体器件
    • US06683343B2
    • 2004-01-27
    • US10084051
    • 2002-02-28
    • Tomoko MatsudaiAkio Nakagawa
    • Tomoko MatsudaiAkio Nakagawa
    • H01L2976
    • H01L29/66333H01L29/66348H01L29/7397
    • In an IGBT, an n buffer layer is formed under an n− high resistance layer in which a MOS gate structure is formed. An n+ buffer layer is formed between the n buffer layer and a p+ drain layer. Since the p+ drain layer is doped at a low dose, the efficiency of carrier injection can be reduced and a high-speed operation is possible without lifetime control. Since no lifetime control is performed, the on-state voltage can be low. Since the n buffer layer does not immediately stop the extension of the depletion layer during a turn-off period, oscillation of the current and voltage is prevented. The n+ buffer layer maintains a sufficient withstand voltage when a reverse bias is applied.
    • 在IGBT中,n型缓冲层形成在形成有MOS栅极结构的n +高电阻层的下方。 在n缓冲层和p +漏极层之间形成n + +缓冲层。 由于p +漏极层以低剂量掺杂,所以可以降低载流子注入的效率,并且可以在没有寿命的情况下进行高速操作。 由于不进行寿命控制,因此导通电压可以低。 由于n缓冲层在关断期间不会立即停止耗尽层的延伸,所以防止了电流和电压的振荡。 当施加反向偏压时,n + +缓冲层保持足够的耐受电压。